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INTRODUCTION 
The global expansion of poultry production to 
meet rising demands for meat and eggs has 
intensified the use of antibiotics in animal 
agriculture, particularly within conventional 
systems where drugs are routinely administered 
for disease prevention and growth promotion 
(FAO, 2017; USDA, 2020). These antibiotics are 
often only partially metabolized and are 
excreted in droppings, which are frequently 
used as organic fertilizers (Meng et al., 2022). 
This practice contributes to the introduction of 
antibiotic residues, antibiotic-resistant bacteria 
(ARB), and antibiotic resistance genes (ARGs) 
into soil ecosystems, thereby altering native 
microbial communities and promoting horizontal 
gene transfer (HGT) via mobile genetic elements 
such as plasmids and integrons (Xu et al., 2021). 

The resulting spread of multidrug-resistant 
organisms in the environment has been 
identified as a critical threat to global public 
health, with projections estimating that up to 10 
million AMR-related deaths could occur annually 
by 2050 if unchecked (Zhang et al., 2024). Soils 
enriched with poultry manure have been shown 
to harbour resistant pathogens, including 

Escherichia coli, Salmonella, and 
Campylobacter, with high levels of resistance to 
beta-lactams, sulfonamides, and 
fluoroquinolones (Furlan & Stehling, 2021; 
Fatoba et al., 2022; Muhtar et al., 2022). These 
findings suggest that poultry manure serves as a 
vector for disseminating clinically significant 
resistance determinants into the broader 
environment. 

Less attention, however, has been paid to locally 
bred or "organic" poultry systems, especially in 
low- and middle-income countries like Nigeria 
(Maikasuwa et al., 2011). These systems 
generally avoid routine antibiotic use, yet birds 
are often reared in close proximity to households 
and fed on kitchen scraps or wastewater, which 
are sources that may contain non-antibiotic 
chemical contaminants such as disinfectants, 
detergents, and personal care products 
(Muhammad et al., 2024). Compounds like 
triclosan and quaternary ammonium compounds, 
though not classified as antibiotics, can exert 
selective pressure through oxidative stress and 
structural mimicry of antimicrobial agents, 
thereby inducing cross-resistance via structure–
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Abstract 
Poultry production contributes significantly to environmental antibiotic resistance, 
particularly through manure-amended soils. This study evaluated the antibiotic 
susceptibility of Escherichia coli isolated from soils amended with conventional poultry 
manure (Site A), local poultry droppings (Site B), and unamended control soils (Site C). 
Isolates were confirmed via Gram staining and biochemical tests, and then subjected to disc 
diffusion testing using ten antibiotics, as per the CLSI 2024 guidelines. E. coli from Site A 
exhibited significantly reduced susceptibility to trimethoprim-sulfamethoxazole 
(11.5 ± 1.50 mm), streptomycin (14.1 ± 3.08 mm), and sparfloxacin (16.1 ± 2.85 mm) 
compared to Site C (p < 0.05). Site C consistently showed higher inhibition zones across most 
antibiotics, indicating lower resistance to these antibiotics. While Site B isolates showed 
intermediate resistance, differences from Site C were not statistically significant. Two-way 
ANOVA confirmed significant effects of both antibiotic type (p = 0.0003) and sample site 
(p < 0.0001) on resistance patterns. These findings underscore the role of poultry farming 
practices, particularly conventional systems, in promoting soil-based antimicrobial 
resistance, warranting stricter regulation and improved manure management. 
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activity relationships (Scaccia et al., 2021; 
Caioni et al., 2023). 

E. coli, a common inhabitant of poultry guts and 
an established faecal indicator, is particularly 
suited for tracking environmental AMR due to its 
ability to rapidly acquire and disseminate ARGs 
(Abubakar et al., 2023; Beshiru et al., 2024). 
Studies have reported its prevalence in both 
clinical and agricultural settings in Nigeria, 
where multidrug-resistant strains, including 
ESBL-producing and AmpC β-lactamase-
harboring types, are increasingly isolated from 
soils and water (Igbinosa et al., 2023; Fashola et 
al., 2024). 

In this study, we investigated the antibiotic 
resistance profiles of E. coli isolated from soils 
amended with droppings from conventionally 
raised poultry, organically reared local poultry, 
and unamended control soils. Our objective was 
to compare the extent to which each manure 
source contributes to the dissemination of 
resistance and to explore the potential co-
selective role of household-derived non-
antibiotic chemicals in shaping resistance 
outcomes. This work aims to inform 
environmental AMR surveillance strategies and 
support sustainable waste management 
practices in poultry farming systems. 

MATERIALS AND METHODS 

Soil samples were collected from three distinct 
settings: poultry farms in the Dutse metropolis, 
households rearing local (organic homebred) 
chickens, and control sites at the Federal 
University Dutse that are free from poultry 
droppings. In total, 12 samples were obtained, 
four from each setting. All samples were clearly 
labeled with their collection site and date, 
following standard protocols (Cheesbrough, 
2006). Group A (A1-A8) represents soils impacted 
by conventional poultry droppings, Group B (B1-
B8) comprises soils from local poultry droppings, 
and Group C (C1-C8) includes control sites with 
no poultry droppings. Soil suspensions were 
prepared by adding 1 g of soil to 9 mL of normal 
saline and performing serial dilutions up to 10⁻⁶ 
as described by Cheesbrough (2006). 

Isolation and characterization of Escherichia 
coli 

For the isolation of E. coli, 0.1 mL aliquots from 
the 10-5 and 10-6 dilutions were spread onto 
MacConkey Agar plates using aseptic techniques. 
The plates were incubated at 37°C for 24h 

(Khamari et al., 2021). Presumptive E. coli 
colonies were subcultured on Nutrient Agar to 
obtain pure cultures and then identified by Gram 
staining and a series of biochemical tests—
including Indole Test, Methyl Red Test, Voges-
Proskauer Test, Citrate Utilization Test and 
Oxidase Test. (Begum et al., 2020; Prayekti et 
al., 2021). 

Antibiotic Susceptibility Testing 

Antibiotic susceptibility testing was performed 
according to the guidelines of the Clinical and 
Laboratory Standards Institute (CLSI, 2024) using 
the disc diffusion method on Mueller-Hinton 
Agar. Pure cultures of E. coli were adjusted to 
the 0.5 McFarland standard in Nutrient Broth. A 
sterile swab was used to evenly spread the 
standardized bacterial suspension onto Mueller-
Hinton agar plates, which were then allowed to 
dry for 5 minutes. Antibiotic discs were then 
placed on the surface using sterile forceps. The 
antibiotic susceptibility testing was performed 
using commercially prepared Gram-negative 
antibiotic discs (Abtek Biologicals Ltd) 
containing Ofloxacin (OFX), Pefloxacin (PEF), 
Gentamicin (CN), Amoxicillin-clavulanic acid 
(AU), Ciprofloxacin (CPX), Trimethoprim-
sulfamethoxazole (SXT), Streptomycin (STR), 
Chloramphenicol (CH), Sparfloxacin (SPX) and 
Ampicillin (AM). The plates were then inverted 
and incubated at 37 °C ± 2 °C for 24 hours. 
Following incubation, the zones of inhibition 
were measured in millimeters and compared to 
CLSI 2024 interpretive charts to determine 
bacterial susceptibility (Igbinosa et al., 2023). 

RESULTS 

Presumptive Escherichia coli colonies isolated 
from soil samples on MacConkey agar appeared 
round, pink, flat, and dry—non-mucoid and 
typical of lactose fermenters. Gram staining 
confirmed them as Gram-negative rods, 
occurring singly or in pairs. Biochemical tests 
(Indole, Methyl Red, Voges-Proskauer, Citrate, 
and Oxidase) were used for confirmation, and 
only isolates matching the standard biochemical 
profile of E. coli were retained for antibiotic 
susceptibility testing. The antibiotic 
susceptibility testing using the disc diffusion 
method revealed variations in inhibition zones 
across the three sites (Table 1).  

Isolates from Site A (conventional poultry 
manure) showed the lowest susceptibility. For 
instance, the mean inhibition zone for 
trimethoprim-sulfamethoxazole was 11.5 ± 1.50 



 UJMR, Conference Special Issue Vol. 10 No. 3. 

June, 2025, pp.12 - 17     
 

14 

 

E-ISSN: 2814 – 1822; P-ISSN: 2616 – 0668 

 UMYU Journal of Microbiology Research                                                                   www.ujmr.umyu.edu.ng 

mm, indicating a high level of resistance. 
Sparfloxacin (15.5 ± 2.73 mm) and streptomycin 
(16.75 ± 2.22 mm) also showed low efficacy. In 
contrast, ciprofloxacin (23.8 ± 2.48 mm) and 
ampicillin (22.13 ± 2.42 mm) demonstrated 
moderate activity. 

Site B (local poultry droppings) exhibited 
intermediate susceptibility patterns. The 
highest mean inhibition zone was observed for 
ciprofloxacin (24.25 ± 1.71 mm), followed by 
ofloxacin (22.25 ± 2.22 mm) and amoxicillin-
clavulanic acid (21.38 ± 3.32 mm). Lower 
susceptibility values were recorded for 
sparfloxacin (17.29 ± 3.53 mm) and pefloxacin 
(18.5 ± 2.28 mm), though still higher than those 
in Site A. 

Site C (control) showed the highest overall 
susceptibility. Amoxicillin-clavulanic acid had 
the largest mean inhibition zone (23.57 ± 3.33 
mm), followed by ciprofloxacin (23.38 ± 2.94 
mm) and streptomycin (22.63 ± 3.00 mm). 
Ofloxacin recorded the lowest mean inhibition 
zone at this site (19.88 ± 5.13 mm), but still 
within the susceptible range. Pefloxacin 
remained consistently ineffective across all 
sites, with inhibition zones below the CLSI 2024 
susceptibility threshold. 

Based on CLSI 2024 interpretive standards, 
isolates from Site A had a higher frequency of 
intermediate and resistant profiles, particularly 
against trimethoprim-sulfamethoxazole, 
sparfloxacin, and streptomycin. Site B displayed 
mixed profiles, while Site C showed 
predominantly susceptible isolates, indicating 
that less selective pressure was present in the 
absence of poultry manure. 

A two-way ANOVA revealed that both antibiotic 
type and isolate site significantly influenced 
inhibition zones. The interaction between 
antibiotics and site was not statistically 
significant (F(18, 60) = 1.62, p = 0.0828), but 
accounted for 19.08% of the total variance. The 
type of antibiotic had a highly significant effect 
(p = 0.0003), contributing 25.07% of the 
variance, while the isolate site was also 
significant (p < 0.0001), explaining 16.67% of the 
total variance. Post hoc comparisons showed 
statistically significant differences between Site 
A and Site C, particularly for sparfloxacin, 
trimethoprim-sulfamethoxazole, and 
streptomycin. In each case, inhibition zones 
were significantly lower at Site A, suggesting a 
possible influence of conventional poultry  T
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manure on the development of antibiotic 
resistance in soil E. coli populations. 

DISCUSSION 

This study demonstrates that manure from 
conventional poultry farming (Site A), which is 
likely to contain antibiotic residues, exerts a 
strong selective pressure on soil E. coli 
populations. This was reflected in consistently 
lower inhibition zones for several antibiotics, 
especially streptomycin, trimethoprim-
sulfamethoxazole, and sparfloxacin. These 
findings align with studies by Mecik et al. (2023) 
and Kaviani et al. (2023), who reported that 
antibiotic-enriched manure promotes the 
dissemination of resistance genes via mobile 
genetic elements and nutrient-fueled horizontal 
gene transfer (Manaia et al., 2024). By contrast, 
the control site (Site C) exhibited broader 
inhibition zones, suggesting preserved baseline 
susceptibility in unamended soils. 

Ciprofloxacin showed moderate efficacy across 
all sites, with Site B (local poultry) performing 
slightly better. The literature on ciprofloxacin 
resistance remains mixed (Fatoba et al., 2022; 
Wang et al., 2023; Ainyakou-Sanga et al., 2025), 
suggesting that environmental and usage-
specific factors modulate its resistance profile. 
Ofloxacin, on the other hand, was consistently 
effective, especially in Site B. This may possibly 
reflect the reduced selective pressure or 
different co-selective stressors, as opined in 
similar research by Tian et al. (2021) and 
Merchant et al. (2012).Trimethoprim-
sulfamethoxazole showed markedly reduced 
efficacy at Site A, consistent with reports that 
sulfonamides persist in soils fertilized with 
antibiotic-contaminated manure (Zhang et al., 
2022). Chloramphenicol remained effective 
across all sites, particularly in the control, 
suggesting it is less influenced by manure-driven 
selection. 

Pefloxacin exhibited poor performance across all 
sites, consistent with widespread resistance 
reported in manure-amended environments 
(Ainyakou-Sanga et al., 2025; Emmanuel-
Akerele et al., 2021). Gentamicin showed 
superior activity at the control site, consistent 
with the findings of Fatoba et al. (2022), which 
suggest that litter-free soils harbor more 
susceptible E. coli populations.Amoxicillin-
clavulanic acid maintained good activity at all 
sites, especially the control, though this 
contrasts with previous reports of high 
resistance (Fatoba et al., 2022). This 

discrepancy may reflect regional variations in 
antibiotic usage or resistance 
mechanisms.Sparfloxacin was notably less 
effective at Site A, supporting the notion that 
intensive antibiotic use promotes resistance 
(Tian et al., 2021). Ampicillin’s unexpectedly 
strong performance at all sites, despite reports 
of high resistance elsewhere (Ngene et al., 2021; 
Wang et al., 2023), may reflect sampling 
limitations or localized patterns of antibiotic 
use. 

Two-way ANOVA revealed significant effects of 
both site and antibiotic on inhibition zones. 
Although the site-antibiotic interaction was not 
statistically significant (p = 0.0828), post hoc 
tests confirmed differences between Site A and 
Site C for sparfloxacin, streptomycin, and 
trimethoprim-sulfamethoxazole. These results 
reinforce that conventional poultry manure 
significantly contributes to AMR in soils. 
Interestingly, E. coli isolates from Site B also 
exhibited elevated resistance compared to the 
control. Although not statistically distinct from 
Sites A or C, these findings suggest that local 
poultry droppings, even in the absence of direct 
antibiotic supplementation, may still promote 
resistance. This may stem from exposure to non-
antibiotic household contaminants (e.g., 
disinfectants, detergents) that promote cross-
resistance through structure–activity 
relationships (Caioni et al., 2023). Thus, the 
perceived safety of organic poultry waste 
warrants reevaluation. 

CONCLUSION 

In conclusion, this study underscores the 
significant impact of poultry manure on 
antibiotic resistance in soil E. coli populations. 
The conventional poultry site, characterized by 
antibiotic-supplemented feed, exhibited 
reduced susceptibility to several key antibiotics, 
highlighting the strong selective pressure 
exerted by such practices. While the control site 
maintained higher susceptibility, the concerning 
observation of elevated resistance in the local 
poultry environment, even in the absence of 
direct antibiotic supplementation, suggests that 
alternative drivers of resistance, such as co-
selection, may be at play. These findings 
underscore the need for a critical reevaluation 
of poultry litter management in agriculture and 
call for further research into the specific 
mechanisms driving resistance in various poultry 
farming systems to safeguard public health and 
ensure the long-term efficacy of antibiotics. 
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