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INTRODUCTION 
The growing consumption of fossil fuels derived 
from petroleum resources raises questions about 
environmental impact and energy security 
(Falano et al., 2014).  Researchers are looking 
for other methods to produce fuels from 
sustainable bioresources because of a number of 
issues, such as the global climate change caused 
by greenhouse gas emissions (Bezerra and 
Ragauskas, 2016).  Socioeconomic progress and 
development in industrialized and emerging 
countries rely heavily on fossil fuels for power 
generation, yet this has various negative 
consequences (Dogru et al. 2020).  Aside from 
these health and environmental concerns, the 
use of fossil fuels in energy generation systems 
exacerbates the problem of low power 
generation, which not only widens the gap 
between demand and supply but also decreases 
people's living standards (Gautam et al., 2019).  
More over 1.1 billion people, or 17% of the 
world's population, live in poverty and without 
access to power (Nabipour et al., 2020).  Access 
to clean energy remains a luxury in many parts 
of the world (Douf et al., 2024).  This has led to 
a surge in research, investment, and innovation 
in renewable energy technologies like solar, 

wind, and biofuels (Elia et al., 2021).  Recently, 
there has been an increase in interest in 
producing bioethanol from biomass materials, 
which is one of the most cost-effective liquid 
fuel alternatives to non-renewable fossil fuels 
(Tekaligne and Dinku, 2019). 

Biofuels are believed to have a lower "carbon 
footprint" than fossil fuels and contribute less to 
greenhouse gas emissions due to their CO2-
neutral conversion (Osman et al., 2024).  
However, there are various concerns with 
biofuels, including the chance that biofuel 
plants will displace food crops.  This has a 
negative influence on food security, especially 
in developing nations (Vassilev et al., 2015).  
Biofuel has gained acceptability as a fuel 
alternative to fossil fuels as people become 
more aware of environmental issues.  (EPA, 
2023).  To avoid conflicts between edible 
resources for human consumption and industrial 
uses, researchers have investigated the 
production of bioethanol from lignocellulosic 
material (Dahnum et al. 2015).  Additionally, 
value was added by utilizing lignocellulosic 
biomass from weeds, agricultural waste, and 
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micro- and macroalgal biomass (Ambaye et al., 
2021). 

Bioethanol is a renewable, colorless, less 
harmful, and rapidly biodegradable fuel derived 
from biological sources that can be used for 
heating, electricity, and fuel (Kida et al., 2023).  
It is now used as an alternative fuel since it is 
biodegradable, derived from renewable sources, 
has a high-octane number, and is less harmful 
than traditional petroleum-based fuels (Akhabue 
et al., 2018).  Biomass energy has the potential 
to drastically reduce greenhouse gas emissions 
(Osman et al., 2024).  According to Sebayang et 
al. (2016), bioethanol can be manufactured from 
a variety of raw materials that are divided into 
three groups based on their chemical 
composition: sucrose-containing feedstocks, 
starch materials, and lignocellulosic materials.  
Although cellulosic materials are more easily 
available and less expensive, the process of 
converting them into ethanol is costly due to the 
several steps required.  In these circumstances, 
employing renewable substrates such as starchy 
byproducts, lignocellulosic biomass, and 
agricultural waste necessitates a novel approach 
(Broda et al., 2024).  Many research studies have 
been conducted on waste items, especially fruit 
waste.  Coconut trash and starchy bio waste 
(Bello et al., 2014; Hossain et al., 2017; Hashem 
et al., 2021) 

The United States and Brazil are the world's 
major ethanol producers, accounting for 85% of 
the total (Alternative Fuels Data Center, 2016).  
The vast majority of ethanol in the United States 
is made from corn starch, whereas Brazil 
generally uses sugarcane (Pattanathu and 
Rahman, 2017).  Thailand and China create 
bioethanol from cassava (Manihot esculenta), 
which is also an edible feedstock (Deesuth et al., 
2015).  However, because of their primary 
importance as food and feed, these traditional 
crops cannot match the global need for 
bioethanol production.  To reduce human 
dependence on fossil fuels, efforts are being 
made to produce bioethanol from non-edible 
feedstocks such as lignocellulosic and starchy 
agricultural feedstocks (Aditiya et al., 2016). 

Given the importance of bioethanol production 
around the world in meeting energy demand, 
data remains scattered, with little effort made 
to condense the findings, which will be critical 
to comprehend (Toor et al.,2020)  in order to 
identify knowledge gaps and provide a roadmap 
for future directions.  This review summarizes 
previous research on bioethanol production, 
including its physicochemical properties, various 

feedstocks, the role of fungal strains in 
bioethanol production, common waste biomass, 
pretreatment methods, and various 
fermentation conditions for bioethanol 
production.  

2.1 Overview of bioethanol production 

Bioethanol is widely produced through a variety 
of chemical and biological methods (Fan et al. 
2012).  The biological approach entails 
fermentation of biomass with ethanologenic 
microbes in anaerobic or semi-anaerobic 
conditions (Clain et al., 2016; Kumar et al., 
2016).  Fermentation is an ancient technology 
that refers to the bioconversion of 
carbohydrates into acid or alcohol via glycolytic 
intermediates.  The bioprocessing of 
carbohydrate-containing feedstock is primarily 
done in two steps (Carvalheiro et al., 2024).  The 
first step is the hydrolysis of polysaccharides into 
fermentable sugars, which are then converted to 
bioethanol using appropriate microorganisms 
(Dave et al., 2019).  Furthermore, downstream 
processing includes bioethanol purification and 
concentration through the distillation process.  A 
significant limitation of the production process 
is the lower concentration of bioethanol in the 
fermentation broth (Lassmann et al., 2014).  

Bioethanol outperforms gasoline due to its high 
compression ratio, shorter burn time, and lean 
burn engine (Splitter et al., 2016; Carrillo-Nieves 
et al., 2019; Elshenawy et al., 2023).  Octane 
number measures engine performance, with a 
higher number indicating better combustion 
(Ilves et al., 2019), because of its 35% oxygen 
content, ethanol emits fewer particulates, 
hydrocarbons, and NOx after combustion (Toor 
et al., 2020).  Furthermore, bioethanol has a 
higher-octane number and combustion 
efficiency than gasoline, a small flame 
luminosity, corrosive nature, lower vapor 
pressure (making cold starts difficult), water 
miscibility, and ecosystem toxicity" (MacLean 
and Lave, 2003).  The properties of ethanol are 
given in Table 1. 

2.2 Bioethanol feedstock  

A variety of biomass can be used to produce 

bioethanol, and these feedstocks fall into one of 

three categories (Table 2).  Feedstocks that 

contain sucrose, such as sugarcane, sugar beet, 

and sweet sorghum; starchy substances, such as 

rice, wheat, corn, and barley; and cellulosic 

biomass, such as wood, forestry residue, straw, 

and grasses, are examples of the first three.  
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(Toor et al., 2020). First generation: Biofuels are 

produced by fermenting sugar-based raw 

substrates or edible substrates.A refined fuel 

requires only a few basic processing steps and is 

typically made from grains, sugars, or seeds of 

which only a specific (usually edible) portion is 

used (Azhar et al., 2017; Derman et al., 2018).  

Second generation: Bioethanol is made from 

lignocellulosic biomass.  The second-generation 

bioethanol processes use sugars released from 

cellulose, necessitating the use of enzymes to 

hydrolyze cellulose (Carrillo-Nieves et al., 2019; 

Rocha-Meneses et al., 2019).  Under the second 

generation, various agricultural byproducts such 

as corn stalks or rice husks, wheat straw, rice 

straw, and non-edible plants such as trees or 

grasses grown specifically for energy, wood 

trimmings, sawdust, bamboo, cotton stocks, and 

other cellulose-containing biomass can be used 

to produce bioethanol (Derman et al., 2018; 

Carrillo-Nieves et al., 2019).  Third-generation 

use algae as substrate for the production of 

bioethanol.  It's still in its early stages (Jambo et 

al., 2019).  Algal fuels' appealing characteristics 

is that, they can be grown with minimal impact 

on freshwater resources and can produce up to 

300 times more oil than conventional crops 

(Yang et al., 2010).  Fourth-generation biofuels 

use metabolic engineering or systems biology 

strategies in feedstock modification, such as E. 

coli gene modifications, which are more 

efficient than yeasts (Azhar et al., 2017; Jambo 

et al., 2019).  The fourth-generation fuels 

include solar fuels or those that capture carbon 

from the process (Rastogi and Shrivastava, 

2017). 

Table 1: Typical physicochemical properties of ethanol NCBI, (2025) 

Property Value 

Molecular Formula C₂H₆O 
Molecular Weight 46.07 g/mol 
Appearance Colorless liquid 
Density 0.789 g/cm³ at 20 °C 
Melting Point −114.1 °C 
Boiling Point 78.23 °C 
Flash Point 12 °C 
Vapor Pressure 5.95 kPa at 20 °C 
Viscosity 1.2 mPa·s at 20 °C 
Surface Tension 22.3 mN/m at 20 °C 
Refractive Index 1.3611 at 20 °C 
Solubility in Water Miscible in all proportions 
pKa (in water) 15.9 
Dipole Moment 1.69 D 
Enthalpy of Vaporization 38.56 kJ/mol 
Thermal Conductivity 0.171 W/m·K at 25 °C 
Specific Heat Capacity 2.44 J/g·K at 25 °C 

 
2.3 Common waste biomass  

2.3.1 Agricultural waste 

Agricultural waste, among others, has become a 
major source of pollution in Nigeria.  The use of 
agricultural waste as a renewable feedstock for 
bioethanol production has the potential to 
generate clean energy (Salisu and Umar, 2023).  
The agricultural waste contains a lot of 
carbohydrates that can be converted into 
bioethanol (Sahman et al., 2020).  Agricultural 
waste is inexpensive, renewable, and abundant.  
Rice straw is one of the most widely used and 
abundant lignocellulosic feedstocks worldwide, 
particularly in Asia and Africa (Singh et al., 
2024).  Each year, approximately 667.6 million 

tons of biomass are post-harvested in Asia 
(Hossain et al., 2017).  Along with rice straw, 
rice husk is being considered as a potential 
source for bioethanol production via yeast 
fermentation (Chavan et al., 2024).  Bioethanol 
production from rice husk can reach 3.20 ± 0.36 
g/l, with an ethanol yield of 0.27 g/g total sugar 
(Srivastava & Agrawal, 2014).  Coconut waste 
biomass has been identified as another 
remarkable source.  The maximum bioethanol 
yield of coconut waste was 90.09% and 
productivity was 0.21 g/L.h, derived solely from 
green coconut shell by Saccharomyces cerevisiae 
(yeast) fermentation (Hossain et al., 2017).  
Commercial bioethanol experiments using 
coconut waste are being carried out in the 
Northeast region of Brazil (Goncalves et al., 
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2015).  Bioconversion of sorghum crop residues 
to ethanol has great potential for improving 
ethanol yield for sustainable bioethanol 
production.  Sweet sorghum bagasse and juice 
yielded 157 and 121 L/tons of bioethanol, 
respectively, based on industrial production 
output (Nasidi et al., 2016).  Sweet potato 
residue fermented with an amylolytic industrial 

yeast strain 1974-GA-temA produced 27.27 g/L 
ethanol (Wang et al., 2024).  Steam-exploded 
corn Stover hydrolysate (SECSH) yielded 0.454 
g/g and an ethanol concentration of 22.96 g/L 
(Wu et al., 2023).  Other residues, such as wheat 
straw, corn straw, and cereal straw, can also be 
viable candidates for bioethanol production 
through fermentation (Swain et al., 2019). 

Table 2: Bioethanol production from various feedstock. 

Generation  Substrate Ethanol production  Reference  

First  Amorphophallus spp.  (starchy 
tuber)  

8.68 ± 0.91 g/L  Bhuyar et al. 2022 

First Sugar beet pulp  12.6 g/l  Berlowska et al., 
2017 

Second  Banana peels 56.13±1.45 and 59.13±0.49 
g/L 

Shitophyta et al., 
2023 

Second  Corn Stover  34.3 g/l  Liu and Chen, 2016 

Second  Steam-exploded corn Stover 
hydrolysate (SECSH) 

22.96 g/L Wu et al., 2023 

Second  seed pods of Bombax ceiba 72.0 g/L Ghazanfar et al., 
2022 

Second  Cellulose-rich corncob 31.96 g/L Boonchuay et al., 
2021 

Second  Potato residue 27.27 g/L   Wang et al., 2024 

Second  Cassava stems, peels and 
leaves 

263ml/Kg, 200ml/kg dry and 
303ml/kg dry biomass 

Pooja et al., 2018 

Third Eucheuma Denticulatum 11.6 g/g  Alfonsín et al., 
2019 

Third  Eichhornia crassipes  ShakilaBegam et 
al., 2024 

Third Kappaphycus alvarezi 64.30g/L Hargreaves et al., 
2013 

Third Sargassum crassifolium 43.92g/L Widyaningrum et 
al., 2016 

  
2.3.2 Municipal Plant-based Waste Biomass  

In terms of environmental cleanliness and public 
health safety, the R&D sector is currently 
focused on recycling and utilizing waste from 
municipal drainage (Hossain et al., 2017).  Korea 
has already started a bioethanol production 
project using municipal waste and sludge from a 
local industrial complex (Park et al., 2010).  
Meanwhile, Sweden began producing bioethanol 

through fermentation from starch plants 
obtained from slurries and streams (Linde et al., 
2008).  Apart from industrial waste, bioethanol 
can also be produced from kitchen waste 
through a fermentation process.  The sugars 
produced after hydrolysis of kitchen waste were 
mainly attributed to the monosaccharides, 
glucose (80%) and fructose (20%).  The 
fermentable sugars obtained were subsequently 
used as a carbon source for bioethanol 



 UJMR, Conference Special Issue Vol. 10 No. 3. 

June, 2025, pp. 267 - 289     
 

271 

 

E-ISSN: 2814 – 1822; P-ISSN: 2616 – 0668 

 UMYU Journal of Microbiology Research                                                                   www.ujmr.umyu.edu.ng 

production by locally isolated yeasts, 
Saccharomyces cerevisiae, Candida parasilosis, 
and Lachancea fermentati.  The yeasts 
successfully consumed the sugar hydrolysate and 
produced the highest ethanol yield, ranging from 
0.45 g/g to 0.5 g/g and productivity between 
0.44 gL−1h−1 - 0.47 gL−1h−1 after 24 hours of 
incubation, which was equivalent to 82.06 - 
98.19% of conversion based on theoretical yield 
(Hafid et al., 2016) 

2.3 3 Lignocellulosic biomasses 

Lignin, hemicellulose, and cellulose are the 

primary components of biomass cell walls.  

Lignin is made up of a wide variety of phenolic 

polymers.  Hemicellulose is a polysaccharide 

that consists of arabinose, acetic acid, and 

xylose linked together.  According to Chundawat 

(2011), cellulose is a macromolecule composed 

of β-linked glucose molecules.  All plant cell 

walls contain these components; the amount of 

each component varies only slightly, so any plant 

material can be used as a feedstock for sugar 

production.  Table 3 shows the composition of 

lignocellulose biomass from various sources 

2. 4 Role of fungal strains in bioethanol 
production  

Fungal strains play an important role in 
bioethanol production.  The fungus Aspergillus 
niger can degrade cellulose and convert paper 
waste into bioethanol, providing the required 
carbon, nitrogen, vitamins, and amino acids 
(Darwesh et al., 2020; Bellaouchi et al., 2021).  
The secretion of fungal amylase by yeast strains 
has enabled the conversion of raw substrate into 
ethEthanolowering production costs (Favaro et 
al., 2015).  Furthermore, phlebioid fungal 
species enabled the bioconversion of 
lignocellulose waste, demonstrating the 
feasibility of single-step bioethanol production 
(Mattila et al., 2017).  Fungi play an important 
role in both biomass pretreatment and sugar 
conversion to bioethanol, making them essential 
for efficient and sustainable bioethanol 
production.  Cellulases and lignocellulolytic 
enzymes are known to be produced by 
Trichoderma, Penicillium, and Fusarium, which 
break down plant cellulose and hemicellulose 
into fermentable sugars.  Hydrolytic enzymes 
enable a diverse range of fungi to break down 
carbon compounds (Lange et al., 2017) 

Table 3.  Composition of Lignocellulose Biomass from various Sources 

Source Cellulose (%) Hemicellulose (%) Lignin (%) References 

Brewer spent grain 23.1 22.9 19.0 Plaza et al., 2017 
Corn Stover 31.5 18.0 14.1 Vergara et al., 2018 
Poplar sawdust 46.2 19.3 26.15 Lai et al., 2020 
Sugarcane bagasse 44 28 21 Ajala et al., 2021 
Wheat straw 32.8 29.9 13.8 Vergara et al., 2018 

Previous research (Table 4), has shown that 
fungal strains play an important role in 
bioethanol production, from biological 
pretreatment to the fermentation process.  
These strains harness the conversion of substrate 
biomass into ethanol.  Oji et al. (2024) found 
that fermenting yeast (g/L) with 6% banana peel 
yielded 44.68±0.82% bioethanol after 3 days at 
5.5 pH and 35°C.  Shitophyta et al. (2023) 
reported that Banana peel was fermented with 
Saccharomyces cerevisiae and Rhizopus oryzae 
at room temperature for 120 hours, with yeast 
concentrations of 2, 3, and 5 g/L.  R. oryzae 
produced more ethanol than S. cerevisiae.  
Water Hyacinth (Eichhornia crassipes) co-
cultured with A. oryzae, A. niger, and S. 
cerevisiae produced approximately 56% more 
ethanol than S. cerevisiae - single culture and S. 
stipitis - single culture (Shakila Begam et al., 
2024).  Cassava peel prepared with 
Saccharomyces cerevisiae and Zymomonas 
mobilis.  Cassava peels produced a high 

percentage yield of 30% in 45 mL of ethanol 
(Behingbe et al., 2021).  Sweet potato residue 
fermented with an amylolytic industrial yeast 
strain named 1974-GA-temA yielded 27.27 g/L 
ethanol over 8 days (Wang et al., 2024).  Steam-
exploded corn stover hydrolysate (SECSH) 
produced with Saccharomyces cerevisiae had an 
ethanol concentration of 22.96 g/L and a yield 
of 0.454 g/g (Wu et al., 2023).  Ethanol was 
optimally produced at 12% substrate 
concentration using rice chaff, at a temperature 
of 35 °C and pH of 5.0 (Adeyemo et al., 2021).  
Ragi husk as a substrate for Aspergillus 
fumigatus JCM 10253 cellulase production 
demonstrates potential for value-added 
industrial products and lignocellulosic 
bioethanol production (Saroj and Narasimhulu, 
2020).  A new strain of Trametes villosa from the 
Paranaense rainforest efficiently hydrolyzes 
barley straw to produce bioethanol, potentially 
lowering the overall cost of bioethanol 
production (Coniglio et al., 2020).  Yeast co-
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culturing of Saccharomyces cerevisiae, Pichia 
barkeri, and Candida in pairs or triples 
significantly increases bioethanol production 
from starchy biowastes, reaching 167.80 0.49 
g/kg of biowaste during experiments in a 7-L 
fermenter (Hashem et al., 2021).  The maximum 
ethanol concentration and ethanol productivity 
values for cellulose-rich corncob (CRC) residence 

with S. cerevisiae were 31.96 g/L and 0.222 
g/L/h, respectively (Boonchuay et al., 2021).  
Lignocellulosic hydrolysate produced by 
Aspergillusniger, Zymomonas mobilis, and 
Trichoderma longibrachiatum yields the highest 
bioethanol yield from lignocellulosic biomass, 
indicating promising pathways for sustainable 
biofuel technologies (Bendaoud et al., 2024). 

Table 4: Summary of bioethanol production from different fungal strains  

Substrate  Fungal strain Brief findings  Reference  

Sugarcane molasses Saccharomyces 
cerevisiae isolate 
MUT15F, 
Saccharomyces 
cerevisiae isolate 
MUT18F, 
andSaccharomyces 
cerevisiae isolate R9MU 

Stress-tolerant yeast strains from 
traditional Ethiopian alcoholic 
beverages can effectively 
produce bioethanol from 
sugarcane molasses, with 
potential for industrial use. 

Fentahun 
and 
Andualem 
2024 

Sweet potato 
residue 

Amylolytic industrial 
yeast strain named 
1974-GA-temA 

Optimizing fermentation 
parameters, such as pH, solid-to-
liquid ratio, inoculation volume, 
and enzyme addition, can 
significantly increase bioethanol 
production from sweet potato 
residue 

Wang et al., 
2024 

Lignocellulosic 
hydrolysate 

Aspergillusniger, 
Zymomonas mobilis and 
Trichoderma 
longibrachiatum 

Aspergillusniger shows the 
highest bioethanol yield from 
lignocellulosic biomass, offering 
promising pathways for 
sustainable biofuel technologies. 

Bendaoud et 
al., 2024 

Corn Stover S. cerevisiae The engineered S. cerevisiae 
strain YL13-2 effectively 
produces high-titer bioethanol 
from steam-exploded corn 
Stover, overcoming inhibitory 
compounds and xylose 
limitations. 

Wu et al., 
2023 

Sugar substrate  Wickerhamomyces 
anomalus BT2, BT5, and 
BT6. Saccharomyces 
cerevisiae, Geobacillus 
stearothermophilus and 
Pseudomonas 
aeruginosa 

Wickerhamomyces anomalus 
strains from traditional Balinese 
beverages can produce 
bioethanol from various sugar 
substrates, with higher ethanol 
production on glucose substrate 
than other substrates. 

Fathiah et 
al., 2023 

Rice husk Aspergillusniger SIF2 
andAspergillus flavus 
CMXY22565 
Saccharomyces 
cerevisiae FJI and 
Pichia kudriavzevii 
IPBCC.y.161552 

Bioethanol can be produced from 
rice husk using a consortium of 
Aspergillusniger SIF2, Aspergillus 
flavus CMXY22565 for hydrolysis 
and a consortium of 
Saccharomyces cerevisiae FJI and 
Pichia kudriavzevii. 

Audu et al., 
2023 

To be continued next page 
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Table 4 continued   

Substrate  Fungal strain Brief findings  Reference  

Saccharum 
spontaneum 
biomass 

Aspergillusniger, 
Ganoderma sessile 
andSaccharomycescerev
isiae (CDBT2) 

 

This study demonstrates a cost-
effective method for producing 
bioethanol from Saccharum 
spontaneum biomass by 
simultaneous saccharification 
and electro-fermentation using a 
mixed culture of microbes. 

Dhungana et 
al., 2022 

Seed pods of 
(Bombax ceiba) 

Saccharomycescerevisia
e 

KOH-steam-treated Bombax 
ceiba seed pods in SSF 
fermentation with Saccharomyces 
cerevisiae resulted in the highest 
ethanol production (72.0 g/L) and 
the highest saccharification 
(58.6% after 24 h). 

Ghazanfar et 
al., 2022 

Agricultural wastes T. reesei, S. cerevisiae, 
and P. stipites. 

Encapsulating microorganisms in 
SBP capsules in a continuous 
bioethanol production process 
ensures long-term prosperity and 
activity, with an efficiency of 60-
70%. 

Rahamim et 
al., 2022 

Sweet potato starch Saccharomycescerevisia
e 

Fungal amylases from 
Endomelanconiopsis 
endophytica, Neopestalotiopsis 
cubana, and Fusarium 
pseudocircinatum can potentially 
improve bioethanol production by 
Saccharomyces cerevisiae, with 
potential yields of 17.3-88.1 
percent. 

Romao et 
al., 2022 

Cellulose-rich 
corncob (CRC) 
residue 

Saccharomycescerevisia
e 

Thermotolerant Saccharomyces 
cerevisiae TC-5 is a promising 
yeast for bioethanol production 
from cellulose-rich corncob 
residue at elevated 
temperatures, with potential for 
second-generation substrates. 

Boonchuay 
et al., 2021 

Rice chaff Aspergillusniger Aspergillusniger S48 effectively 
hydrolyzes pre-treated rice chaff 
to produce bioethanol at 12 
percent substrate concentration, 
35°C, and pH 5.0, offering a cost-
effective and environmentally 
friendly alternative energy 
source. 

Adeyemo et 
al., 2021 

Cellulose  Aspergillus sp.  DHEF7 A novel Aspergillus sp.  DHE7 
strain maximizes extracellular-
glucosidase production, making it 
a promising biofuel source and 
potential food and beverage 
additive. 

El-Ghonemy, 
2021 

  To be continued next page 
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Table 4 continued   

Substrate  Fungal strain Brief findings  Reference  
Wheat straw Mucor indicus, 

Aspergillus niger and 
Aspergillus fumigates 

Mucor indicus is the most efficient 
and eco-friendly fungus for 
producing bioethanol from wheat 
straw fermentation, with 8.4% 
production after 15 minutes of UV 
exposure. 

Naqvi et al., 
2021 

Alkali-pretreated 
corncob 

Acidic fungal laccases Acidic fungal laccases may be a 
better choice than neutral/alkaline 
fungal laccases for delignification 
and detoxification of alkali-
pretreated corncob for bioethanol 
production. 

Liu et al., 
2021 

Starchy biowaste 
(waste rice) 

Saccharomyces 
cerevisiae, Pichia 
barkeri, and Candida  

Yeast co-culturing in couples or 
triples significantly enhances 
bioethanol production from starchy 
biowastes, reaching 167.80 ± 0.49 
g/kg of biowaste during 
experiments in a 7-L fermenter. 

Hashem et 
al., 2021 

Cocoyam, 
Xanthosomaroseum, 

Kluyveromycesmarxian
usand Pichia stipites 

African wild cocoyam is an 
excellent feedstock for 
bioethanol production, with 
Kluyveromyces marxianus and 
Pichia stipitis strains producing 
more ethanol when used as 
coculture at pH 4.5. 

Chukwudi et 
al., 2021 

Ragi husk Aspergillus fumigatus Ragi husk as a substrate for 
Aspergillus fumigatus JCM 10253 
cellulase production shows 
potential for value-added 
industrial products and 
lignocellulosic bioethanol 
production. 

Saroj and 
Narasimhulu, 
2020 

Distillers’ dried 
grains with solubles 
(DDGS) 

Aspergillus niger Hydrolyzed DDGS can be an 
economical substrate for 
Aspergillusniger strains to 
produce cellulase and xylanase, 
offering a potential solution for 
bioenergy production. 

Iram et al., 
2020 

Cornstalk Trichoderma reesei Fungi Trichoderma reesei 
exposed to gamma rays can 
optimize glucose content in 
cornstalks, leading to a 98% 
increase in bioethanol production 
by Saccharomyces cerevisiae. 

Mulyana et 
al., 2020 

cellulosic substrates 
(barley straw) 

Trametes villosa A novel strain of Trametes villosa 
from Paranaense rainforest 
efficiently hydrolyzes barley 
straw to produce bioethanol, 
potentially reducing the total 
cost of bioethanol production. 

Coniglio et 
al., 2020 
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Table 5:  Review of various pretreatment processes for bioethanol production  

Feedstock  Mechanical  Chemical  Biological  Sugar Refere
nce  

Banana 
peel  

The peels were washed 
with water and air-
dried at 45 °C.  

1M NaOH, 
(1-3%) H2SO4 

 42.14±
0.92% 

Oji et 
al., 
2024 

Sugarcane 
bagasse 

SCB was dried to 
constant weight and 
then crushed with a 
grinder. 

2% NaOH, 2% 
H2S04 and 
12% sodium 
percarbonat
e/glycerol 

Cellulase (10000 U/g) 443.52 
mg/g 

Ruan et 
al., 
2024 

Sorghum  The sorghum was first 
washed and then dried 
and sieved 

  Alpha-amylase (90, 
100 and 110 U/g) and 
amyloglucosidase (36, 
51 and 66 U/mL) 

175.94 
g/L 

Sebaya
nga et 
al., 
2017 

Microalgae  The Microalgae sample 
was sun dried for seven 
(7) days for milling 

1% H2SO4, %2 
NaOH 

0.5% Aspergillus niger 0.519 ± 
0.239 
g/l 

Kida et 
al., 
2023 

Pineapple 
waste 

The PI wastes were 
grinded using a grinding 
mill and blended with a 
blender 

 Natural hydrolysis 
enzymes such as 
pectinase, cellulase, 
and hemicellulose, 
which are naturally 
present in the fruit 

12.67 ± 
0.03 

Mgeni 
et al., 
2024 

Napier 
Grass 

The Grass was chopped 
into smaller pieces of 1–
3 cm in length and 
oven-dried, ground and 
sieved 

3.0% (w/w) 
NaOH  

T. reesei and S. 
cerevisiae co-culture  

82% Mueans
ichaia 
et al., 
2022 

Potatoes  The Potato was cleaned 
to be free from sand, 
stones, soil and potato 
foliage.  Thoroughly 
washed unpeeled 
potatoes were cooked 
in a pressure cooker in 
distilled water 
containing 0.5% 
potassium 
metabisulphite for 30 
minutes.  Boiled  
potatoes were mashed, 
dried 

 Co-culture    

 
2.5 Biological conversion of lignocellulosic 
biomass to bioethanol 

2.5.1 Pretreatment process 

There are various pretreatment methods (Table 
5) increase cellulose reactivity and the potential 
yield of fermentable sugars (Edeh, 2021).  These 
could be either traditional or advanced 

pretreatments.  Traditional pretreatments are 
divided into four categories: chemical, physical, 
physicochemical, and biological, whereas 
advanced pretreatment methods can be acid-
based fractionation or ionic liquid-based 
fractionation (ILF) (Maurya et al., 2015).  
Mechanical pretreatment is the process of 
reducing the size of biomass particles to reduce 
the crystallinity of the lignocellulose and  
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Table 6: Various fermentation condition for bioethanol production 

Feedstock  Fermentation agent Nutrient Condition  Bioethanol  Reference  

Potato 
waste 

Saccharomyces 
cerevisiae MTCC170 
&Aspergillusniger 
MTCC2196 co-culture  

YEPD, CYEA 30°C, 96hr, 
pH 4.5, 
200rpm 

1.0234g/m
L, 
1.0208g/m
L 

Sagar et 
al., 2016 

Banana 
peel 

Yeast  Dextrose sugar 
(1g), Urea (1g); 
Yeast extract 
(0.2g), MgSO4. 
7H2O (1.0g 

5.5pH, 
3days, 35°C 

44.67±0.82 Oji et al., 
2024 

Sorghum  Saccharomyces 
cerevisiae 

1 g of yeast 
extract, 0.4 g of 
KH2PO4, and 0.2 g 
of NH4Cl 

181rpm, 
35.6°C, 

82.11 g/L, Sebayanga 
et al., 
2016 

Algae Saccharomyces 
cerevisiae 

glucose broth 
media and yeast 
extract, PDA, 

35°C pH of 
5.5.  

0.142ml/l Kida et 
al., 2023 

 Trichoderma reesei 
and Saccharomyces 
cerevisiae co-culture  

  16.90 g/L.  

Sugarcane 
molasses  

Saccharomycescerevi
siae designated as 
R9MU (OR143320.1), 
R20MU (OR143322.1), 
MUT15F 
(OR209276.1), 
MUT18F 
(OR209286.1), and 
R19MU (OR143321.1) 

YEPD, molasses  pH 4.5, 
30°C, 72 h 

13.13 ± 
0.08% 

Fantahun 
and 
Andualem, 
2024 

Raw corn 
starch, 
Broken 
rice  

S. cerevisiae L20 4, 1; MgSO4·7H2O, 
0.5; NaCl, 0.1; 
malic acid, 2; 
tartaric acid, 3. 
mg/L: biotin, 
0.02; D-
pantothenic acid, 
0.4; myo-inositol, 
2; nicotinic acid, 
0.4; thiamine, 0.4; 
pyridoxine, 0.4; p-
aminobenzoic 
acid, 0.2; H3BO3, 
0.5; CuSO4·5H2O, 
0.04; KI, 0.1; 
NaMoO4·2H2O, 
0.2; ZnSO4·7H2O, 
0.4; FeCl3·6H2O, 
0.4; CaCl2·2H2O, 
100) supplemented 
with 200 g/L 
glucose 

72hrs, 30 °C 101 g/L Gronchi et 
al., 2019 

   To be continued next page 
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Table 6 continued     

Feedstock  Fermentation agent Nutrient Condition  Bioethanol  Reference  

cellulose-
rich 
corncob 
(CRC) 
residue 

Saccharomyces 
cerevisiae TC-5 

(0.1 M) 
supplemented 
with (NH4)2SO4 4 
g/L, yeast extract 
1 g/L, NH4H2PO4 
1 g/L, and 
MgSO4·7H2O 0.1 
g/L was mixed 
with 7.5, 10, 12.5, 
and 15% (w/v) CRC 
residue.  

pH 5.0, 35–
40 °C 

38.23 g/L Boonchuay 
et al., 
2021 

Rice straw T. reesei NCIM 1052    25.3 g/L  Prasad et 
al., 2020 

increase the accessible surfaces, thereby 
promoting subsequent hydrolysis.  According to 
Abo et al. (2019), lignocellulosic material is 
typically ground to less than 2 mm fragment 
size.  Biological pretreatment is the use of 
microorganisms to break down lignocellulosic 
biomass before further enzymatic hydrolysis by 
organisms which include white-rot, brown-rot, 
and soft-rot fungi, as well as bacteria (Hassan et 
al., 2018).  Chemical pretreatment uses a 
variety of chemical reagents, including acids, 
bases, and oxidizing agents.  The impact on 
lignocellulosic material varies according to the 
chemical reagent used (Abo et al., 2019).  The 
primary challenge of these pre-treatment 
processes is to make cellulose easily accessible 
while avoiding harsh conditions that could lead 
to sugar degradation. 

2.5.2 Hydrolysis  

The hydrolysis process is the first and limited 
step in converting insoluble biopolymers into 
soluble organic complexes like oligomers and 
monomers, depending on the microorganisms 
used in anaerobic digestion, the hydrolysis step 
of the process may be rate-limiting (Ma et al., 
2013).  During the hydrolysis reaction, proteins 
are degraded into amino acids, carbohydrates 
are hydrolyzed into monosaccharides, and fatty 
acids are obtained by hydrolysis of lipids by the 
enzyme’s proteases, cellulases, or amylases, 
and lipases, respectively (Kumar and Anand, 
2019), it is the most important fungus used in 
biotechnological applications worldwide.  It has 
been discovered that Aspergillus strains may 
produce a range of enzymes (Mostafa et al.; 
2016; Sattar et al., 2019), including cellulase, 
and amylase (Ahmad et al., 2024; Saeed et al., 
2025).  

2.5.3 Fermentation  

Fermentation is a biological process in which 
microorganisms such as yeast, fungi, or bacteria 
convert the monomeric sugar units obtained 
during the hydrolysis step into ethanol, and 
gases (Sharma and Lorrache, 2020).  After the 
biomass has been digested by enzymes, 
microorganisms such as yeasts and bacteria 
ferment sugars such as galactose, fructose, 
glucose, and mannose to produce ethanol 
(Gonzalez et al. 2024).  Yeast species can make 
bioethanol from sugar fermentation, despite 
Saccharomyces cerevisiae being the most 
common sugar fermenter (Walker and Walker, 
2018).  While Scheffersomyces stipitis uses 
lignocellulose substrates (Liang et al., 2013) or 
algal biomass (Obata et al., 2016), According to 
Parapouli et al. (2020), S. cerevisiae's distinct 
biological characteristics, such as its capacity to 
ferment and create alcohol and CO2, as well as 
its tolerance to adverse osmolarity and low pH, 
make it ideal for biotechnological applications.  
Biomass with high lignocellulose content is used 
as feedstock, providing an alternative 
fermentation method (Mishra et al., 2019).  
Until recently, combinations of bacteria and 
yeast (Mishra et al., 2019; Wang et al., 2019), 
yeast and yeast (Ntaikou et al., 2018; Singh et 
al., 2014), or fungi and yeast (Paschos et al., 
2015; Izmirlioglu et al., 2017) were used in co-
cultures for simultaneous saccharification and 
co-fermentation.  Co-cultures have also been 
investigated as a technique to increase ethanol 
yield (Mishra et al., 2019; Izmirlioglu et al., 
2017).  The Table 6 shows some instances of 
different microorganisms employed in simple 
sugar fermentation, as well as their 
corresponding ethanol yields at varying 
operating conditions. 
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2.6 Types of fermentation techniques 

2.6.1 Simultaneous saccharification and 
fermentation (SSF) 

The simultaneous saccharification and 
fermentation (SSF) design consists of a single 
reactor in which both hydrolysis and 
fermentation take place.  Adopting this type of 
solution overcomes the inhibition problem 
observed in separate hydrolysis and 
fermentation (SHF), as glucose and cellobiose 
are gradually used during their manufacture 
(Mazzeo and Piemonte et al., 2020).  Recently, 
the simultaneous saccharification and 
fermentation method has been used, which 
combines biomass saccharification with 
simultaneous sugar fermentation in a single 
reactor (Rastogi and Shrivastava, 2018).  
Kumagai et al. (2014) also reported that the 
development of an SSF process was ideal for 
producing ethanol from Hinoki cypress and 
Eucalyptus after fibrillation via steam 
pretreatment and subsequent wet-disk milling. 

2.6.2 Batch processing or culture 

This system involves inoculating a batch of 

culture medium with microorganisms.  After a 

certain amount of time, the fermentation 

process is complete, and the product is 

harvested.   At the start of the stationary phase, 

the culture is disbanded to recover its biomass 

(cells, organisms) or the compounds that 

accumulated in the medium (alcohol, amino 

acids), and a new batch is established (Behl et 

al., 2023).  Due to these inherent disadvantages 

and lower yields, the commercial market 

believes in shifting to other fermentation 

techniques (Puligundla et al., 2018; De Araujo 

Guilherme et al., 2019; Liu et al., 2019). 

2.6.3 Fed-Batch culture  

In fed-batch fermentation, the feed rate is 
limited, so the cell mass density is not increased 
excessively (Azhar et al., 2017).  As a result, the 
cell mass concentration must be maintained at a 
specific level to ensure the highest ethanol 
productivity (Ariyanti et al., 2014; Moshi et al., 
2014; Phukoetphim et al., 2018).  The fed-batch 
system adds a fresh aliquot of medium on a 
continuous or periodic basis, without removing 
the culture fluid.  The fermenter is designed to 
handle increasing volumes.  The system is always 
in quasi-steady state. 

2.6.4 Continuous fermentation  

Continuous fermentation produces more ethanol 
than batch fermentation (Phwan et al. 2018).  
Continuous culture is an open system in which 
nutrients are added to the bioreactor aseptically 
and continuously while the culture broth 
(containing cells and metabolites) is removed at 
the same time.  The volume of the culture broth 
remains constant due to a constant feed-in and 
feed-out rate (Kuene, 2019).  Continuous 
operations are generally easier to control and 
less laborious than batch operations, but there 
is a serious contamination issue with this 
operating method (Mahboubi et al., 2017; 
Carrillo-Nieves et al., 2019). 

2.6.5 Solid state fermentation 

Solid state fermentation conditions are ideal for 
growing microbes such as bacteria, yeasts, and 
filamentous fungi on solid substrates, increasing 
their potential for use in bioprocesses (Ortiz et 
al., 2016; Marín et al., 2019; Salom~ao et al., 
2019).  Solid State Fermentation is the 
controlled growth of microorganisms in the 
absence of free water.  Solid State Fermentation 
products include industrial enzymes, fuels, and 
nutrient-rich animal feeds.  The use of modern 
biotechnical knowledge and process control 
technologies can result in significant 
productivity gains from this ancient process.  
Solid state fermentation reduces the risk of 
bacterial contamination by eliminating free 
water; more concentrated enzymes are 
produced, which can be extracted with a small 
amount of water (Kapilan, 2015). 

2.7 Factors affecting bioethanol production  

Temperature, sugar concentration, pH, 
fermentation time, rate of agitation, and 
inoculum size are all factors that influence 
bioethanol production (Zabed et al., 2014).  
However, one of the most important factors 
influencing the amount of ethanol produced is 
the temperature during fermentation.  Previous 
studies (Piarpuzan et al., 2014; Garcia et al., 
2015) found that the ideal fermentation 
temperature ranges from 30 to 38ºC.  Thus, the 
temperature is precisely controlled throughout 
the fermentation process.  The temperature is 
precisely controlled.  Furthermore, high 
temperatures can denature the tertiary 
structure of enzymes that regulate microbial 
activity and the fermentation process, making 
them inactive (Lopez-Trujillo et al., 2023).  
There have also been reports of using enzymatic 
hydrolysis to accelerate sugar release (Piarpuzan 
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et al., 2014).  Several conditions, including 
steam purging, microwave and ultrasonic wave 
treatment, have been proposed for acid or 
alkaline prepretreatmentth hydrochloric acid or 
aqueous ammonia (Garcia et al., 2014; Gabhane 
et al., 2015). 

2.8 Ethanol Recovery  

Bioethanol is produced in a diluted state (Saini 
et al., 2020), thus water and other contaminants 
must be removed to obtain a fuel-grade ethanol 
product (Aditiya et al., 2016).  Bioethanol can 
be recovered at a variety of temperatures: (i) at 
or near fermentation temperature; (ii) slightly 
higher than fermentation temperature that does 
not harm microorganisms or hinder enzyme 
activity (Saini et al., 2020).  Ethanol recovery 
begins with a standard distillation process, 
which produces azeotropic ethanol.  
Furthermore, dehydration and purification 
stages are used to produce fuel-grade ethanol, 
which uses a large amount of energy and has high 
operational costs, limiting the economic 
feasibility of lignocellulosic ethanol on a 
commercial scale (Saini et al., 2020).  Ethanol 
separation is the most expensive and energy-
intensive phase in the ethanol production 
process (Zentou et al. 2019).  The energy 
required for ethanol recovery and purification 
varies with the concentration of ethEthanol the 
feed stream (Saini et al., 2020).  The energy 
required for ethanol separation has been 
calculated to be between 12-15% and 35% of 
combustion energy for input streams containing 
12 and 4 wt% ethEthanolespectively (Granjo et 
al., 2020).  Membrane technology employs semi-
permeable barriers that exploit the principle of 
selective permeability, which is widely used in 
the purification of bio-based products 
(Méireleset al., 2016).   Azeotropic distillation 
helps separate azeotropic mixtures into their 
pure constituents (Saini et al., 2020).  Ethanol 
purification involves two primary steps: ethanol 
pre-concentration and ethanol dehydration 
(Chandra et al., 2018).  The mechanism of the 
separation into these two distinct phases is that 
ethanol-water mixtures exhibit azeotropic 
behavior by mass fraction (Habaki et al., 2016). 

CONCLUSION AND FUTURE PERSPECTIVE 

The world is experiencing significant global 
warming due to the widespread use of fossil 
fuels.  Bioethanol has recently seen increased 
commercialization due to its market stability, 
low cost, sustainability, and greener output, as 
well as its potential to reduce fossil fuel 
depletion.  However, the major challenges that 

have hampered bioethanol production are a lack 
of optimization, which results in a lower yield of 
bioethanol produced and, as a result, it cannot 
be used for large-scale production.  This review 
has offered a complete understanding of 
physicochemical features, diverse feedstocks, 
the role of fungal strains in bioethanol 
production, common waste biomass, 
pretreatment procedures, and various 
fermentation settings for bioethanol production.  
The steps necessary for making bioethanol as the 
cost-effective, reliable, and widely available 
biofuel for a growing global population.  The 
invention of bioethanol was hailed as a great 
breakthrough in converting waste biomass to 
fuel energy, hence lowering the widespread 
usage of fossil fuels.  The production efficiency 
of bioethanol from diverse substrates, including 
sugar-based, starchy by-products, cellulosic 
biomass, and agricultural waste, will necessitate 
an innovative method.  The enzymatic 
capabilities of fungal strains are critical, and can 
be further improved by implementing novel 
technologies such as synthetic biology and 
genome editing to develop superior 
microorganisms.  Further research should 
investigate the potential of fungal strains for 
improved enzymatic hydrolysis and 
fermentation, with an emphasis on strain 
engineering to improve sugar usage and inhibitor 
tolerance. 
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