Determination of Survivability of Some Probiotic Lactic Acid Bacteria in Some Locally Produced Drinks

Aisha, A. S.1, Bukar, A2, Abdul, N. A1, Salima, A. S.3 and Isa, I. A.1

1 Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State, Nigeria.
2 Department of Microbiology, Faculty of Life Sciences, Bayero University Kano, Kano State, Nigeria.
3 Department of Biology, Faculty of Life Science, Federal University Dutsin-Ma, Katsina State, Nigeria.

*Correspondence: bashirabdulkadir@umyu.edu.ng

Abstract

Foods are not only intended to placate hunger and supply essential nutrients but also to prevent the nutrition-related diseases and to improve physiological and mental wellbeing of consumers. This led to the development of probiotic foods. Probiotics are said to be live microorganisms which when adequately (108-1010 CFU/mL) administered confer health benefits to the host. Probiotic drinks both dairy and non-dairy have been found to be carriers of these organisms to their site of action. This research aims at determining the survivability of probiotic lactic acid bacteria in some locally produced drinks. The isolation of the organisms from yoghurt and “nono” were conducted using cultural methods and further characterized using biochemical tests. Cell surface hydrophobicity (CSH), cellular auto-aggregation assays (CAA), hemolytic activities, bile salt and NaCl tolerance test were conducted to determine the probiotic properties of the organisms. The survivability of the organisms was evaluated after standardizing the inoculum using 0.5 McFarland standard and then serial dilution, plating and counting of visible colonies. Results were analyzed by ANOVA using SPSS software version 20.0. Out of the ten isolated and biochemically characterized lactic acid bacteria, three Lactobacillus species showed probiotic status, with CSH values of (79%, 75.2% and 91.3%) and CAA index of (79.3%, 74% and 83.5%), respectively, however there is no statistically significant difference between the CAA and CSH values of the isolates (p = 0.13 and p = 0.5, respectively), which indicates that all the isolates had approximately equal probiotic capabilities. “Kunun zaki” showed the highest survivability rate with the probiotic status being maintained for three days, and counts ranging from 1.4 to 1.05 x 106 CFU/mL; whereas “zobo” showed the least duration as a probiotic (one day, and a count of 1.16 x 106 CFU/mL. There is a significant difference (p=0.02) in the growth of the organisms over the incubation period (5 days), however, there is no significant difference (p=0.82) between the growth of the organisms growing on different drinks, indicating that time after incubation is the critical determinant of probiotic status, and that the isolates can grow equally well in all the drinks tested. This research reported the isolation of Lactobacillus species confirmed to be probiotics from yoghurt and “nono”. Enumeration of probiotic LAB in all the drinks revealed the drinks were probiotic containing 106 CFU/mL for two (2) days with the exception of “Kunun zaki” that reached up to three (3) days as a probiotic drink. The pH level of all the drinks decreased and the drinks became acidic (pH range 6.0-1.8).

Keywords: Drinks, Lactobacillus species, Probiotics, Survivability.

INTRODUCTION

According to FAO/WHO, probiotics are live microorganisms that when properly provided, confer health advantages to the host (Vasie et al., 2014). The term “probiotic” is derived from a Greek word that means natural life and has a number of connotations over the years (Ukeyima et al., 2010). Probiotics were first characterized by Lilly and Stillwell in 1965 as microorganisms that support the growth of other microbes (Ukeyima et al., 2010). Among other things, probiotics are thought to improve digestion, nutritional absorption, and food safety.

Probiotic bacteria are members of the Lactic Acid Bacteria (LAB) family, which also includes the lactobacillus species that are utilized in the production of fermented foods and convert carbohydrates into lactic acid and energy (Vasie et al., 2014). When carbohydrates are fermented, lactic acid is the main by product produced by lactic acid bacteria, which are
Gram positive, non-spore forming, catalase negative, lacking in cytochromes, acid tolerant rods or cocci microorganisms that produce lactic acid as the major end product during fermentation of carbohydrates (Guesh et al., 2019). Due to the rise in antibiotic resistance, there is focus in the use of Lactobacillus species as probiotics (Costa et al., 2014).

Consumers no longer regard foods with respect only in terms of taste, flavor and immediate nutritional benefits, but also in terms of their capacity to offer beneficial health effects beyond their basic nutritional significance (Rahman et al., 2015). Yoghurt and other dairy products are essential probiotic carriers (Costa et al., 2014).

Yoghurt is a probiotic carrier and one of the earliest fermented milk products (Anika and Jayati, 2015). By fermenting milk with bacterial cultures made up of a mixture of Streptococcus thermophilus and Lactobacillus bulgaricus, yoghurt is produced (Guesh et al., 2019).

Locally made fermented yoghurt is produced, and consumption of these foods is customarily done. Since there is no standardization, it is manufactured by backslapping previously made yoghurt with fresh milk, which contains variety of bacteria. Additionally, the delay phase of the organisms causes the fermentation time in locally fermented yoghurts to be prolonged, giving rise to a lengthy acidification course and making it difficult to generate an end product with a stable quality (Guesh et al., 2019).

Additionally, probiotic yoghurts reduce lactose intolerance because lactase, an enzyme that convert lactose (milk sugar) in milk to lactic acid fermentation (Djomne et al., 2011). Yoghurt is considered probiotic yoghurt if it has between 10^6 and 10^7CFU/mL at the time of consumption and 10^8CFU/mL at the time of manufacturing (Vasie et al., 2014).

A beverage is a fluid that is intended for consumption by people (David et al., 2020). It is a large and important subgroup of the food industry that includes many different types of thirst-quenchers and subgroups (Claudia et al., 2019). Dairy and non-dairy beverages are also options (Craig and Fresan, 2021). Yoghurt and fermented milk drinks are examples of dairy beverages, whereas fruit, cereals, or vegetable based drinks like “Zobo”, “Kunun aya” and “Kunun zaki” are examples of non-dairy beverages (Ndulaka et al., 2018).

Regardless of socio-economic position, many households in Nigeria, especially in the North, consume “Zobo” one of the ready-to-eat healthy drinks (Sylvester et al., 2015). The ingredient used to make “Zobo” drink is the dried calyces of the malvaceae family of Hibiscus sabdariffa, a hairy-branched aromatic shrub native to the tropical and semi-tropical areas of the world primarily in East Indies and West Africa. It is a nourishing beverage, and water is used to make it mostly (Osueke and Ehirim, 2004). Zobo” is medically known to lower blood pressure, cholesterol, and strengthens the immune system (Chibuze et al., 2016).

“Kununaya” on the other hand is a drink native to the Northern Nigerian and is produced from a mixture of tiger-nuts, dates and coconut. It is a healthy beverage full of fibre and vitamin E as well as many other minerals. It is a non-alcoholic beverage that can be provided to guests as refreshment (Rowland et al., 2021).

“Kununzaki” is a cereal based non-alcoholic fermented beverage which is consumed mainly in the Northern part of Nigeria. It can be produced from corn, sorghum, or millet (Ndulaka et al., 2018). It has a creamy appearance, low viscosity, sweet bitter taste and a sprey, nutty flavor. It also contains essential vitamins and minerals (Bada et al., 2018).

MATERIALS AND METHODS

Samples and Sample Collection

Three (3) samples each of both yoghurt and “nono” were collected from different points (Kofar Durbi, KofarSauri, Kerau) and production companies (Freshyo, Hollandia, Mai-dabino) within Katsina for the research. They were collected in sterile leak proof plastic containers and transported in ice coolers to Department of Microbiology of Umaru Musa Yaradua University, Katsina for analysis (APHA, 2006).

Isolation of LAB from Yoghurt and Nono

De Man Ragosa and Sharpe (MRS) agar was used as suitable medium for isolation of lactic acid bacteria and was prepared according to the manufacturers’ instruction. Discrete colonies were isolated using pour plate method. Ten fold serial dilutions using 1ml of the sample in 9ml of sterile distilled water was carried out up to the 10^5 dilution. One (1mL) of each suspension was separately introduced unto to two empty sterile petri dishes, MRS medium was then poured in and the plates were gently swirled to mix the sample and the medium. The plates were later incubated anaerobically at 37°C for 48-72 h for the growth of lactic acid bacteria. Discrete colonies were isolated and sub-cultured onto the same MRS medium to obtain pure isolates.
These pure isolates were then kept in a refrigerator at 4°C until required for further identification purposes (Michaylova et al., 2007). The morphological, biochemical and physiological identification methods used include Gram staining, endospore formation, Catalase, oxidase, indole, Citrate utilization, and MR-VP tests, as well as motility test, pH and NaCl tolerance tests, to identify lactic acid bacteria.

Determination of Probiotic Properties of the LAB Isolates

The probiotic characteristics of the isolates were identified using the following methods

Cellular Auto-aggregation Assay

The specific cell-cell interaction known as auto-aggregation was determined by the method described by Tochukwu et al. (2020). Overnight grown bacterial broth cultures were centrifuged at 12000 rpm for 5 min. to yield cell pellets. The pellets were repeatedly washed with Phosphate Buffer Saline (PBS) and re-suspended in 6 mL of PBS and the initial absorbance was measured at 600nm. The bacterial suspension was incubated at 37°C for 1 hour and the final absorbance of the supernatant was measured at 600nm. The percentage of cellular auto-aggregation was calculated by the formula:

\[
\text{Rate of Auto-aggregation \%} = \frac{\text{OD initial} - \text{OD final}}{\text{OD initial}} \times 100
\]

Assessment of Cell-surface Hydrophobicity

The ability of the bacterial cells to stick with hydrocarbons determines the extent of adhesion to the epithelial cells in the gastrointestinal tract is known as cell surface hydrophobicity. To determine cell surface hydrophobicity of the isolate, overnight grown bacterial broth cultures were centrifuged at 12000 rpm for 5 min. and the cell pellets were harvested. These cell pellets were then washed two times with phosphate buffer and re-suspended in 6 mL of phosphate buffer, followed by measuring the initial absorbance at 600 nm. After that 3 mL of the bacterial suspension was mixed with 2 mL of the hydrocarbon “xylene”, and shaken well for 2 min.. The mixture was incubated and left undisturbed for 1 h for phase separation. The aqueous phase was then discarded carefully and the final absorbance was recorded at 600nm (Tochukwu et al., 2020). The rate of cell surface hydrophobicity was calculated by the formula

\[
\text{Rate of Hydrophobicity \%} = \frac{\text{OD initial} - \text{OD final}}{\text{OD initial}} \times 100
\]

Bile Salt Tolerance Test

The test organisms were grown overnight in de Man Ragosa and Sharpe (MRS) broth. An aliquot of 0.1mL of the culture suspension was inoculated in tubes containing 10 mL of the MRS broth with 1.5 % bile. The inoculated tubes were incubated at 37°C for 48 h. Presence of turbidity indicated a positive result and absence indicated a negative result (Succi et al., 2005).

Hemolytic Activity

The method of Reuben et al. (2019) was used to determine the hemolytic activity of the isolates. Overnight grown cultures of the presumed LAB isolates in MRS broth were streaked onto blood agar and then incubated at 37°C overnight. Hemolytic activities of the isolates were observed and recorded. The presence of Beta hemolysis was indicated by a clear colorless yellow zone surrounding the colonies depicting total lysis of the red blood cells. Alpha hemolysis was indicated by a small greenish zone to brownish discoloration of the medium depicting reduction of hemoglobin to methemoglobin which diffuses around, and Gamma hemolysis with no change observable change in the medium.

Determination of the Survival Activity of Probiotic Strain Isolated from Locally Fermented Yogurt in “Zobo,” “Kunun aya” and” Kunun zaki”

After being streaked on MRS Agar, fresh cultures were cultured for 24h at 35°C. The acquired culture was then diluted with water to achieve turbidity similar to tube 1 on the 0.5% MacFarland scale which is equivalent to 1.5 x 10^8 CFU/mL. The obtained culture was then injected into various drinks and incubated at 37°C for 24hours before being kept in cold storage (Goncalves et al., 2008). The serial dilution approach was used to count the number of viable cells. One (1mL) each dilution was taken out of the samples using sterile syringe, inoculated into petri plates, and then the prepared media was put on top and gently swirled. At 37°C, the plates underwent anaerobic incubation for 24, 48, 72, 96 and 120 hours. Emergence of colonies were observed and recorded (Cheesbrough, 2006).

RESULTS

Characterization of Probiotic Bacteria from the LAB Isolates

The results of this study showed that based on the probiotic characterisation criteria, 3 out of the 10 Lactic Acid Bacteria (LAB) isolates were considered to be probiotic, as they were found to be non-haemolytic, and they showed positive tolerance to acidic pH (3-5), 1.5% bile salt concentration and 2-8% NaCl (Table 1). The isolates were all gamma haemolytic.
Statistically, the p value of cell surface hydrophobicity and cellular autoaggregation assay of the LAB isolates indicates no significant difference between the isolates (p = 0.13 and p = 0.5, respectively). This shows that all the isolates had approximately equal probiotic capabilities.

Table 1: Probiotic Properties of LAB Isolates

<table>
<thead>
<tr>
<th>Probiotic Characterization</th>
<th>Lactobacillus spp 1</th>
<th>Lactobacillus spp 2</th>
<th>Lactobacillus spp 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Surface Hydrophobicity</td>
<td>79%</td>
<td>75.2%</td>
<td>91.3%</td>
</tr>
<tr>
<td>Cellular auto-aggregation assay</td>
<td>73.9%</td>
<td>74%</td>
<td>83.5%</td>
</tr>
<tr>
<td>Haemolytic activity</td>
<td>Gamma</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
<tr>
<td>NaCl tolerance 2%</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NaCl tolerance 4%</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NaCl tolerance 8%</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH tolerance 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH tolerance 5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bile salt tolerance test 1.5%</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: + = Positive

Survivability of Probiotic LAB in Non-Dairy Drinks

The LAB counts of the survival of two (2) of the probiotic isolates in the various drinks for the period of 5 days are as follows.

Lactobacillus spp 1 survived in all the 3 drinks and showed probiotic status in “Kunun aya” for a period of 3 days, with LAB counts ranging from 1.53×10^6 - 1.14×10^6CFU/ml. However the probiotic status in “Kunun zaki” was for a period of 2 days only, with counts ranging from 1.23×10^6 - 1.0×10^6CFU/ml; and the probiotic status in “Zobo” drink was maintained for just one day, with a LAB count of 1.07×10^6CFU/mL. There is a statistically significant difference (p= 0.02) in the growth of the organisms over the incubation period (5 days), however, there is no significant difference (p=0.82) between the survivability of the organisms in different drinks. This indicates that the time of incubation affects the probiotic status, and not the type of drink (Figure 1).

![Figure 1: Survivability of Probiotic LAB in Non-Dairy Drinks (*Lactobacillus* spp1)](image-url)

Key: K.A = Kunun Aya, K. Zaki = Kunun Zaki, Zobo = Zobo drink

Note: The P value for the growth of the isolates with regards to the incubation time (p = 0.023 < 0.05) indicated a significant difference between the organisms growing in the various drinks over the incubation period, while the P value for variation in growth between the substrates (p = 0.82 >
Lactobacillus spp.2 also survived in all the 3 drinks however “Zobo” drink and “Kununaya” maintained the probiotic status for 1 day, with a colony count of 1.16×10^5CFU/mL and 1.05×10^5CFU/mL, respectively, whereas “Kununzaki” maintained the probiotic status for 3 days, with the survival of the isolates ranging from 1.4×10^5 - 1.05×10^6CFU/mL. There is a statistically significant difference ($p= 0.001$) in the growth of the organisms over the incubation period (5 days), but there is no significant difference ($p=0.16$) between the growth of the organisms on different substrates. The results were shown in figure 2.

![Figure 2: Survivability of Probiotic LAB in Non-Dairy Drinks (Lactobacillus spp 2)](image)

Key: K.A = Kunun Aya, K. Zaki = Kunun Zaki, Zobo = Zobo drink
Note: The P value in for the growth of the isolates with regards to the incubation time is $p = 0.001 < 0.05$, showing a significant difference between the organisms growing in the various drinks over the incubation period; while the P value for variation in growth between the substrates is ($p = 0.16 >0.05$), showing no significant difference in the survivability of the organisms growing in the various drinks over the incubation period.

The pH Level Produced by Lactobacillus species
The change in pH level by Lactobacillus specie1in the drinks for the period of 5 days is as follows: “Kunun aya” (5.7 - 2.83), “Kunun zaki” (5.84 - 2.24) and “Zobo” drink (4.00-1.53), whereas the pH level produced by Lactobacillus specie2 is as follows: “Kunun aya” (5.7 - 2.75), “Kunun zaki” (5.84 - 3.55), “Zobo” drink (4.00 - 2.48). There is a statistically significant difference ($p <0.05$) in the pH level over the incubation period (5 days) and also between the types of drinks. The results were shown in figures 3 and 4 respectively.
Figure 3: pH of the Drinks Produced by *Lactobacillus* specie 1 over 5 days Incubation Period

Note: The P values (0.008 and 0.0002) indicated significant differences in the pH production with regards to both the incubation time and the type of drink, respectively, which shows that incubation time and drink type significantly influence the lactic acid content of the drinks over the incubation period.

Figure 4: pH of the Drinks Produced by *Lactobacillus* specie 2 over 5 days Incubation Period

Note: The P value for difference in pH production with regards to both substrate (type of drink) and incubation time was 0.0002, which shows that both substrate type and incubation time significantly affect the lactic acid content of the drinks.

DISCUSSION

The probiotic characteristics, including cell surface hydrophobicity (75.2-91.3%) and cell auto-aggregation assay (73.9-83.5%) values obtained in this study agreed with what was reported by Miao *et al.* (2020), who reported *Lactobacillus salivarus* as non-haemolytic LAB with cell surface hydrophobicity of 34.49% and cellular auto-aggregation assay value of 95.6%. Rakesh *et al.* (2019) on the other hand reported *Lactobacillus* spp. as non-haemolytic LAB with cell surface hydrophobicity ranging from 50.3% to 77.8%, and cellular auto-aggregation assay values of 51.02% to 78.95%. Moreover, Rine *et al.* (2019) reported *Lactobacillus reuterii* as probiotic bacteria with cell surface hydrophobicity of 40 % - 70%, and cellular auto-aggregation assay values of 37.66 % - 59.5%. The high value of cellular auto-aggregation assay is important for the colonization, kin, kind recognition and survival of the bacteria on the surfaces of the interacting cells (El-Shama et al., 2021), while the high value of the cell hydrophobicity will facilitate the adhesion of the microorganisms to biotic and abiotic factors (Carina and Arturo, 2021).

The ability of probiotic *Lactobacillus* species to grow in non-dairy beverages had been reported by previous works such as the work of Yusnita *et al.* (2017), where the growth of *Lactobacillus plantarum* in roselle beverage was shown over a period 20 days and was able to maintain its probiotic status in the beverage for the whole period (20 days). Additionally non-dairy drinks are not usually considered as a major source of...
calories nevertheless, fruits, vegetables and cereals serve as an ideal drink for the development of probiotic beverages and offer several advantages for the growth and survival of probiotic organisms (Panagiotis et al., 2016). The present research also agreed with the work of Yusnita et al. (2017) with regards to the increase in the pH content of roselle beverage, however, they reported no statistically significant difference in the pH content over the incubation period. In contrast, this study found out the pH (lactic acid production) showed statistically significant variation with the incubation time. This work also agreed with the work of Omole and Oranusı (2019) who reported that the pH of wine produced from Hibiscus sabdariffa using Lactobacillus fermentum ranged from 3.47 - 2.76, over the period of 24 hours.

CONCLUSION
Conclusively, this research reported the isolation of Lactobacillus species from yoghurt and “nono”, which were confirmed to be probiotics. Enumeration of probiotic LAB in all the drinks revealed that the drinks were probiotic, containing \(10^6\) CFU/mL for two (2) days, with the exception of “Kunun zaki” that reached up to three (3) days as a probiotic drink. The pH level of all the drinks decreased and the drinks became acidic (pH range 6.0-1.8).

REFERENCES

