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Abstract
Monitoring hydrocarbon degradation is critical to assessing environmental pollution and the effectiveness of bioremediation strategies. Phyllosphere bacteria residing on plant surfaces have been shown to play a vital role in breaking down hydrocarbons; however, there is limited understanding of the compound-specific degradation patterns within the complex microbial communities present in the phyllosphere. This study evaluated the hydrocarbon-degrading capacities of four phyllosphere-derived isolates (Kocuria kristinae EN3, Pseudomonas oleovorans EP3, Pseudomonas aeruginosa EP4, and EP7) and a mixed-species consortium in comparison to natural attenuation in simulated bioremediation of contaminated soil (soil micrococosm) using Gas chromatography-flame ionization (GC-FID) analysis. Soil microcosms were amended with 5 g kg⁻¹ spent engine oil and inoculated with either individual isolates (~10⁸ CFU g⁻¹), the consortium (equal proportions of all four strains), or left uninoculated (natural attenuation). Incubation proceeded for 60 days at 28 °C under aerobic conditions. GC- FID analyzed Hydrocarbon profiles at day 0 and day 60 to quantify relative peak areas and identify emergent byproducts. Results revealed that the consortium achieved a 2-fold increase in 1-Docosene (from 14.3% to 29.5% area) and produced shorter alkanes (Hexadecane, 0.20%; 1-Hexane, 0.99%). Individual strains displayed divergent patterns: EP3 eliminated mid-chain alkanes and generated halogenated byproducts (e.g., trichloromethane, 0.52%), EN3 uniquely accumulated a fluorinated ester (Octacosyl heptafluorobutyrate, 13.7%), and EP7 selectively enriched 1-Docosene (22.4%). Natural attenuation mirrored many effects of the consortium, with cyclic hydrocarbons (Cyclohexane) increasing from 0.71% to 15.2%, indicating substantial indigenous activity. In conclusion, this study highlights the efficacy of GC-FID in tracking hydrocarbon degradation and the potential of phyllosphere bacteria in bioremediation. Future research should focus on optimizing bacterial consortia for field-scale applications.
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INTRODUCTION
The increasing prevalence of hydrocarbon pollution due to industrial activities, oil spills, and energy production poses substantial environmental challenges (Atlas and Bartha, 1992). These pollutants degrade ecosystems and threaten biodiversity and human health (Zhou et al., 2016). Bioremediation has emerged as a viable strategy to mitigate the impact of hydrocarbon contamination, particularly by using microorganisms that possess the innate ability to degrade these compounds (Rhoads et al., 2014). Among these microorganisms, phyllosphere bacteria have garnered attention for their potential role in biodegradation due to their unique ecological niches and metabolic capabilities (Rani et al., 2015).
The phyllosphere represents a unique environment where diverse microbial communities thrive, and phyllosphere bacteria have shown promise in bioremediation, particularly in the degradation of hydrocarbons found in spent engine oil, petroleum, and its derivatives. These hydrocarbons pose significant environmental challenges due to their persistence and toxicity (Tian et al., 2018; Dellagnezze et al., 2014; Poddar et al., 2019).
Gas Chromatography-Flame Ionization Detection (GC-FID) is a robust analytical tool for tracking hydrocarbon degradation due to its high sensitivity, precision, and ability to resolve complex mixtures (Tsioulpas et al., 2021). Unlike genomic or culture-based methods, GC-FID provides quantitative data on residual hydrocarbons, enabling real-time assessment of microbial degradation efficiency (Booth et al., 2023). This technique has been widely used to validate bioremediation outcomes, particularly in studies involving bacterial consortia (Santos et al., 2018).
[bookmark: _Hlk200555689]Despite the growing body of research focusing on microbial bioremediation, significant gaps remain in our understanding of the specific metabolic pathways employed by phyllosphere bacteria in degrading various hydrocarbon compounds (Salisu and Ibrahim, 2024). While previous studies (Salisu and Ibrahim, 2024) have highlighted the potential of specific bacterial strains like Pseudomonas and Bacillus, there is limited understanding of the compound-specific degradation patterns within the complex microbial communities present in the phyllosphere (Ibrahim et al., 2024). This study aims to fill these critical knowledge gaps by conducting a detailed analysis of the degradation capabilities of phyllosphere bacteria using GC-FID, focusing on their responses to specific hydrocarbon pollutants (on the analytical evaluation of compound-specific degradation patterns). By elucidating the metabolic capabilities of these bacteria in degrading hydrocarbons, our research will contribute to a greater understanding of their potential role in ecological restoration and bioremediation efforts. This work lays the groundwork for future exploration into the bioengineering of bacterial strains for enhanced hydrocarbon degradation and offers visions into developing sustainable phylloremediation strategies for managing hydrocarbon pollution in real-world environmental applications.
MATERIALS AND METHODS
Soil Collection and Characterization
Topsoil (0–15 cm) was collected from an uncontaminated agricultural field in Katsina, Nigeria. After removing stones and plant debris, soil was air‐dried at room temperature (25 ± 2 °C), sieved through a 2 mm mesh, and homogenized.
Phyllosphere bacterial isolates
Four phyllosphere-drived bacterial isolates (Kocuria kristinae EN3, Pseudomonas oleovorans EP3, Pseudomonas aeruginosa EP4 and Pseudomonas aeruginosa strain EP7) were used in this study. In our previous study, these isolates showed significant spent engine oil (SEO) degradation (Ibrahim et al., 2024).
Bacterial Consortium Preparation
The four bacterial isolates were maintained on nutrient agar at 4 °C. Each strain was revived in 100 mL nutrient broth for inoculum preparation and incubated at 30 °C with shaking at 150 rpm until mid‐exponential phase (OD₆₀₀ ≈ 0.8). Cells were harvested by centrifugation (5,000 × g, 10 min), washed twice in sterile 0.85% (w/v) NaCl, and resuspended to ≈ 10⁸ CFU mL⁻¹. The synthetic consortium was prepared by mixing equal volumes of each strain suspension immediately prior to soil inoculation.
Simulated bioremediation of SEO-contaminated soil experimental setup and incubation
This was done utilizing the methodology proposed by Mamdoh (2018). Six planting bags containing 500 g of air-dried garden soil were used. The bags were stored in a glass building at room temperature. The soil in each bag was appropriately mixed with 5% (v/w) polluted engine oil which was the pollution level range recommended. Treatments included:
1. Bag 1 – 4 (Individual isolates): soil + oil + single‐strain inoculum (10 mL each)
2. Bag 5 (Consortium): soil + oil + mixed‐strain inoculum (10 mL; ~10⁸ CFU g⁻¹ soil)
3. Bag 6 (Natural attenuation control): soil + oil + 10 mL sterile saline
All bags were loosely closed to maintain aerobic conditions and incubated at 28 °C in the dark. Bags were gently inverted every 3 days to ensure homogeneity and avoid anaerobic pockets. Each treatment was performed in triplicate. Samples (5 g) for hydrocarbon analysis were collected at day 0 (immediately after oil amendment) and day 60 using total petroleum hydrocarbon (TPH) extraction and analysis through gas chromatography-flame ionization detector (GC-FID) of the samples according to standard methods of ASTDM 3921 and USEPA 8270B (EPHC, 2023).
Hydrocarbon Extraction
The residual TPH present in the soil was extracted by stirring 10 g of soil and 10 mL of n–hexane: dichloromethane solvent system (1:1) together for five minutes. After that, it was left to settle and filtered to disconnect the liquid mixture from the soil. It was done three times, and the collected extract was dried to eliminate the extracting solvent. Lastly, the filtrate was reduced to 1 mL under evaporation and kept in a vial prior to GC-FID analysis (Balogun et al., 2015).
GC-FID Analysis
Hydrocarbon profiles were determined using an Agilent 7890A gas chromatograph equipped with a flame ionization detector and a DB-5 fused silica capillary column (30 m × 0.25 mm i.d., 0.25 µm film). The injection volume was 1 µL (split 50:1), carrier gas helium at 1.2 mL min⁻¹, injector temperature 280 °C, detector temperature 300 °C. The oven program was: initial 60 °C (hold 2 min), ramp at 10 °C min⁻¹ to 300 °C (hold 10 min). A mixture of well-known TPHs (hydrocarbons C10-C40) was analysed as an additional positive control for standard calibration of GC-FID and for response to varying hydrocarbon components. A blank sample (e.g., clean solvent) was also taken as a negative control, whose absence ensured that no contamination could be involved, providing a background response. The detection is based on ionization in a hydrogen flame, and the ions that are formed create an electrical current proportional to the concentration of the organic compound, and the limit is in the low-parts-per-billion (ppb) range. Peak identification was achieved by comparison with authentic standards (C₆–C₃₂ n-alkanes) and NIST mass spectral library matches; relative abundances were calculated from peak areas.
Viable Count During Biodegradation
To monitor bacterial survival, 1 g soil subsamples were serially diluted in sterile saline and plated on nutrient agar at days 0, 30, and 60. Colony counts were expressed as CFU g⁻¹ soil. 
RESULTS 
GC-FID Profile of the Consortium Treatment
Gas chromatograms of the consortium‐inoculated soil (bag 5) showed four major peaks before treatment (day 0), corresponding to Cyclohexane (RT 6.8742 min; 0.7073 % area), 1-Docosene (RT 35.4175 min; 14.3322 %), 2,6-Dimethyl heptadecane (RT 29.5657 min; 3.6778 %) and 1-Eicosene (RT 36.2545 min; 0.1017 %) (Table 1).
After 60 days, the chromatogram still exhibited four peaks, but with markedly different abundances: Cyclohexane rose to 15.1611 % (RT 5.8623 min), and 1-Docosene to 29.5343 % (RT 36.00 min). Two new peaks appeared [Hexadecane (RT 27.4327 min; 0.2009 %) and 1-Hexane (RT 6.999 min; 0.9944 %)], suggesting oxidative shortening of long‐chain hydrocarbons (Table 2). The increase in the most abundant peaks, alongside appearance of shorter alkanes, implies that the consortium transformed heavier components into lighter fractions rather than complete mineralization.
Gas Chromatography Profiles of the Negative Control (Natural Attenuation)
The uninoculated soil (bag 6) displayed an identical initial profile to the consortium (Cyclohexane 0.7073 %, 1-Docosene 14.3322 %, etc.; Table 3). By day 60, natural attenuation similarly yielded increases in Cyclohexane (15.1611 %) and 1-Docosene (29.5343 %), with Hexadecane (0.2009 %) and 1-Hexane (0.9944 %) peaks emerging (Table 4). This parallel trend indicates a substantial role for indigenous microbes or abiotic processes in altering the hydrocarbon profile.
[bookmark: _Toc193051245][bookmark: a1]
Table 1: Gas Chromatography Profiles of the Extracted Engine Oil in the Positive Control Before Biodegradation Study (day 0) 
	Peak No.
	Retention time (min)
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	6.8742
	0.7073
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	35.4175
	14.3322
	1-Docosene
	C22H44
	[image: C22H44]

	
3
	29.5657
	3.6778
	2,6-dimethyl heptadecane
	C19H40
	[image: 2,6-Dimethylheptadecane | C19H40 | CID 545603 - PubChem]

	4
	36.2545
	0.1017
	1-Eicosene
	C20H40
	[image: 1-EICOSENE Structure - C20H40 - Over 100 million chemical compounds | CCDDS]


[bookmark: _Toc193051246][bookmark: a2]Table 2: Gas Chromatography Profiles of the Extracted Engine Oil in the Positive Control After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	5.8623
	15.1611
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	36.00
	29.5343
	1-Docosene
	C22H44
	[image: C22H44]

	3
	27.4327
	0.2009
	Hexadecane
	C16H32
	[image: Hexadecane | C16H34 | CID 11006 - PubChem]

	4
	6.999
	0.9944
	1-Hexane
	C6H12
	[image: 1-Hexene.png]


Table 3: Gas Chromatography Profiles of the Extracted Engine Oil in the Negative Control Before Biodegradation (day 0)                                                                                                                   
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	6.8742
	0.7073
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	35.4175
	14.3322
	1-Docosene
	C22H44
	[image: C22H44]

	3
	29.5657
	3.6778
	2,6-dimethyl heptadecane
	C19H40
	[image: 2,6-Dimethylheptadecane | C19H40 | CID 545603 - PubChem]

	4
	36.2545
	0.1017
	1-Eicosene
	C20H40
	[image: 1-EICOSENE Structure - C20H40 - Over 100 million chemical compounds | CCDDS]


[bookmark: _Toc193051248][bookmark: a4]Table 4 Gas Chromatography Profiles of the Extracted Engine Oil in the Negative Control After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	5.8623
	15.1611
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	36
	29.5343
	1-Docosene
	C22H44
	[image: 1-Docosene | C22H44 | CID 74138 - PubChem]

	3
	27.4327
	0.2009
	Hexadecane
	C16H32
	[image: Hexadecane | C16H34 | CID 11006 - PubChem]

	4
	6.999
	0.9944
	1-Hexane
	C6H12
	[image: 1-Hexene.png]


[bookmark: _Toc193051249][bookmark: a5]Table 5 Gas Chromatography Profiles of the Extracted Engine Oil in the EN3 Before (day 0) Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	

1
	19.3128
	0.1581
	Tridecane
	CH₃(CH₂)₁₁CH₃
	[image: Tridecane | C13H28 | CID 12388 - PubChem]

	2
	35.9913
	0.5876
	1-Docosene
	C22H44
	[image: 1-Docosene | C22H44 | CID 74138 - PubChem]

	
3
	30.8256
	0.4596
	Octadecane
	C16H32
	[image: Octadecane | C18H38 | CID 11635 - PubChem]

	
4
	36.2545
	0.1017
	1-Eicosene
	C20H40
	[image: 1-EICOSENE Structure - C20H40 - Over 100 million chemical compounds | CCDDS]



[bookmark: _Toc193051250][bookmark: a6]Table 6 Gas Chromatography Profiles of the Extracted Engine Oil in the EN3 After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	6.127
	0.2173
	Trichloromethane
	C2H5Cl₃
	[image: Trichloromethane methane | C2H5Cl3 | CID 18546890 - PubChem]

	2
	24.8745
	0.1154
	Pentadecane
	C15H32
	[image: Pentadecane | C15H32 | CID 12391 - PubChem]

	3
	30.6949
	13.6949
	Octacosyl heptafluorobutyrate
	C32H57F7O2
	[image: Octacosyl heptafluorobutyrate | C32H57F7O2 | CID 91692955 - PubChem]




Gas Chromatography Profiles of the Extracted Engine Oil in the EN3 (Kocuria kristinae treatment)
Before treatment, four peaks were observed: Tridecane (RT 19.3128 min; 0.1581 %), 1-Docosene (0.5876 %), Octadecane (0.4596 %), and 1-Eicosene (0.1017 %) (Table 5). After 60 days, only three peaks remained: Trichloromethane (0.2173 %), Pentadecane (0.1154 %), and a large new peak of Octacosyl heptafluorobutyrate (13.6949 %) (Table 6). The loss of two original peaks and accumulation of a fluorinated ester suggest that EN3 effected chain scission and subsequent derivatization, albeit with incomplete mineralization. 
Gas Chromatography Profiles of the Extracted Engine Oil in the EP3 (Pseudomonas oleovorans  treatment)
Initial EP3 profiles contained Cyclohexane (0.0356 %), Decane (0.5964 %), Pentadecane, 2,10-trimethyl- (0.2189 %) and 1-Hexacosene (23.7243 %) (Table 7). Post‐treatment, three peaks persisted: Trichloromethane (0.5218 %), a brominated pentadecane derivative (0.3286 %), and Octacosyl heptafluorobutyrate (0.0622 %) (Table 8). The near‐complete disappearance of mid‐chain alkanes and dominant long‐chain alkene reflects EP3’s strong degradative capability, generating primarily small halogenated byproducts
[bookmark: _Toc193051251][bookmark: a7]
Table 7: Gas Chromatography Profiles of the Extracted Engine Oil in the EP3 Before (day 0) Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	5.4287
	0.0356
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	16.7062
	0.5964
	Decane
	C10H22
	[image: Decane | C10H22 | CID 15600 - PubChem]

	3
	28.5543
	0.2189
	Pentadecane, 2,10-trimethyl-
	C18H38
	[image: 2,6,10-Trimethylpentadecane.png]

	4
	37.1552
	23.7243
	1-Hexacosene
	
C26H52

	[image: 1-Hexacosene | C26H52 | CID 29303 - PubChem]



[bookmark: _Toc193051252][bookmark: a8]Table 8: Gas Chromatography Profiles of the Extracted Engine Oil in the EP3 After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	

1
	6.2437
	0.5218
	Trichloromethane
	CHCl3
	[image: Trichloromethane/Chloroform, CAS No. 67-66-3 | Reference ...]

	
2
	30.9254
	0.3286
	Pentadecane
	C9H16BrNO
	[image: 1-(4-Bromobutyl)-2-piperidinone.png]

	
3
	27.2707
	0.0622
	Octacosyl heptafluorobutyrate
	C32H57F7O2
	[image: Octacosyl heptafluorobutyrate | C32H57F7O2 | CID 91692955 - PubChem]




Gas Chromatography Profiles of the Extracted Engine Oil in the EP4 (Pseudomonas aeruginosa Strain EP4 treatment)
EP4’s chromatogram at day 0 featured Cyclopentadecane (0.051 %), 9-Heptadecanone (0.788 %), 1-Octadecene (0.3206 %) and 1-Hexacosene (23.7243 %) (Table 9). After remediation, four peaks remained: Trichloromethane (0.2391 %), 1-Octadecene (0.5078 %), Hexadecane (0.3162 %) and oxybis[dichloro-Methane] (0.2445 %) (Table 10). EP4 sustained the long‐chain alkene but generated smaller halogenated compounds, indicating selective breakdown of ketones and alkanes.
Gas Chromatography Profiles of the Extracted Engine Oil in the EP4 (Pseudomonas aeruginosa Strain EP7 treatment)
Before treatment, EP7 exhibited Cyclohexane (0.0356 %), 2,6-Dimethyl heptadecane (3.6778 %), 1,1,3-Triclohexylpropane (21.1037 %) and 2-Octyl-1-Dodecanol (0.3165 %) (Table 11). Post‐treatment profiles showed Trichloromethane (0.6936 %), an increased 1-Docosene peak (22.3845 %), 1-Nanodecene (0.7259 %) and 1,2,3-Trimethyl Benzene (0.1472 %) (Table 12). EP7’s capacity to convert complex multifunctional hydrocarbons into a dominant C22 alkene underscores its selective metabolic pathways.
[bookmark: _Toc193051253][bookmark: a9]
Table 9: Gas Chromatography Profiles of the Extracted Engine Oil in the EP4 Before (day 0) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	30.3824
	0.051
	Cyclopentadecane
	C15H30
	[image: Cyclopentadecane | C15H30 | CID 67525 - PubChem]

	2
	31.6648
	0.788
	9-Heptadecanone
	C17H34O
	[image: 9-Heptadecanone | C17H34O | CID 10887 - PubChem]

	3
	30.7627
	0.3206
	1-Octadecene
	C18H38
	[image: 1-Octadecene | C18H36 | CID 8217 - PubChem]

	4
	37.1552
	23.7243
	1-Hexacosene
	
C26H52

	[image: 1-Hexacosene | C26H52 | CID 29303 - PubChem]


[bookmark: _Toc193051254]
[bookmark: a910]Table 10: Gas Chromatography Profiles of the Extracted Engine Oil in the EP4 After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	5.3578
	0.2391
	Trichloromethane
	C2H5Cl₃
	[image: Trichloromethane methane | C2H5Cl3 | CID 18546890 - PubChem]

	2
	30.7637
	0.5078
	1-Octadecene
	C18H38
	[image: 1-Octadecene | C18H36 | CID 8217 - PubChem]

	3
	27.4337
	0.3162
	Hexadecane
	C16H32
	[image: Hexadecane | C16H34 | CID 11006 - PubChem]

	4
	5.4387
	0.2445
	Oxybis [dichloro-Methane]
	C2H2Cl4O
	[image: Methane, oxybis[dichloro- (CAS 20524-86-1) - Chemical & Physical Properties  by Cheméo]




[bookmark: _Toc193051255][bookmark: a911]Table 11: Gas Chromatography Profiles of the Extracted Engine Oil in the EP7 Before (day 0) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	5.4287
	0.0356
	Cyclohexane
	C6H12
	[image: Cyclohexane | Formula, Structure & Density - Lesson | Study.com]

	2
	29.5657
	3.6778
	2,6-dimethyl heptadecane
	C19H40
	
[image: 2,6-Dimethylheptadecane | C19H40 | CID 545603 - PubChem]

	3
	32.2512
	21.1037
	1,1,3-Triclohexylpropane
	C3H5Cl3
	[image: 1,1,3-Trichloro-propane - Optional[13C NMR] - Chemical Shifts - SpectraBase]

	4
	32.9839
	0.3165
	2-octyl-1-Dodecanol 
	
C20H42O
	[image: 2-Octyl-1-dodecanol | C20H42O | CID 21414 - PubChem]



[bookmark: _Toc193051256][bookmark: a912]Table 12 Gas Chromatography Profiles of the Extracted Engine Oil in the EP7 After (day 60) the Biodegradation Study
	Peak No.
	Retention time/min
	Peak Area%
	Matched Compound IUPAC Name
	Molecular Formula
	Structure

	1
	6.2414
	0.6936
	Trichloromethane
	C2H5Cl₃
	[image: Trichloromethane methane | C2H5Cl3 | CID 18546890 - PubChem]

	2
	34.5185
	22.3845
	1-Docosene
	C18H38
	[image: 1-Octadecene | C18H36 | CID 8217 - PubChem]

	3
	33.7399
	0.7259
	1-Nanodecene
	C19H38
	[image: 1-Nonadecene | C19H38 | CID 29075 - PubChem]

	
4
	9.9968
	0.1472
	1,2,3-trimethyl Benzene
	
C19H12
	[image: Benzene, 1,2,3-trimethyl- (CAS 526-73-8) - Chemical & Physical Properties  by Cheméo]




Comparative Degradation Efficiencies Across all Treatments
Peak Reduction
EN3 and EP3 treatments each lost one original peak (from 4 to 3), whereas the controls and other isolates maintained four peaks, suggesting that EN3 and EP3 achieved the most extensive qualitative degradation.
Emergence of New Compounds
All inoculated treatments produced trichloromethane, indicating common dehalogenation pathways. Only the consortium (positive control) and EP7 generated or enhanced native alkenes (1-Docosene), while EP3 and EN3 yielded significant levels of fluorinated byproducts.
Shift in Peak Areas
The consortium and negative control both saw >20-fold increases in Cyclohexane and >2-fold increases in 1-Docosene, pointing to substantial hydrocarbon transformation even without introduced isolates, likely due to native flora.
Compound-Specific Degradation Patterns Across all Treatments
Cyclohexane: Minimal in all treatments at day 0 (0.0356–0.7073 %), yet post‐treatment levels rose to 0.5218–15.1611 %, indicating deconstruction of larger alkanes into cyclic hydrocarbons.
1-Docosene: The most dominant compound in many samples, both pre- and post-treatment. EP7 notably increased its relative abundance to 22.3845 %, while the consortium doubled its area to 29.5343 %, suggesting selective enrichment or partial β-oxidation of longer chains.
DISCUSSION
Enhanced Performance of the Consortium: Synergy and Broad-Spectrum Activity
In our study, the mixed‐species consortium achieved notable transformations of high-molecular-weight hydrocarbons, doubling the relative abundance of 1-Docosene and generating shorter alkanes (Hexadecane, 1-Hexane) over 60 days (Table 2). This broad-spectrum activity likely stems from complementary enzyme systems (β-oxidation, monooxygenases, dehalogenases) distributed among community members. Similar synergistic effects have been reported in designed bacterial consortia: Patowary et al. (2016) demonstrated that a consortium combining biosurfactant-producing and non-producing Bacillus strains removed ~84% of total petroleum hydrocarbons (TPH) in 5 weeks, outperforming individual isolates (Patowary et al., 2016). Fungal–bacterial consortia further exemplify this synergy: combining Acinetobacter sp. with Scedosporium sp. significantly increased TPH degradation compared to monocultures, highlighting the advantage of mixed enzymatic repertoires (Silva et al., 2024).
Contrastingly, naturally enriched consortia from marine sediments exhibit variable degradation rates depending on origin: “deep” consortia removed ~47% of alkanes in 6 days, while “surface” consortia removed only ~8% under the same conditions, reflecting the importance of community composition and prior exposure (Charalampous et al., 2021). Our positive control consortium, sourced from a phyllosphere community, achieved intermediate performance (extensive chain-shortening but limited complete mineralization), highlighting the need to tailor consortia to site-specific contaminants and environmental parameters.
Selectivity of Individual Isolates: Comparing EN3, EP3, EP4, and EP7
Pseudomonas oleovorans (EP3)
EP3 nearly eliminated mid-chain alkanes, producing predominantly small halogenated byproducts (Table 8). In contrast, the strain P. oleovorans NMA achieved 98–99% degradation of used engine oil within 7 days when immobilized. GC–MS confirmed the disappearance of major oil components such as pyrene and phytane (Huang et al., 2012). The disparity in byproduct profiles (non‐toxic end-products in NMA versus halogenated intermediates in EP3) may reflect strain-specific enzyme complements or differences in experimental conditions (e.g., free vs. immobilized cells).
Kocuria kristinae (EN3)
EN3 accumulated a unique fluorinated ester (Octacosyl heptafluorobutyrate) alongside a reduction in original peaks (Table 6). While literature on Kocuria kristinae itself is limited, related Kocuria strains demonstrate substantial hydrocarbon degradation: Kocuria sp. from the Tuha oil field degraded 43% of heavy oil and 56% of asphaltenes in 7 days under optimized conditions (Huang et al., 2012), and Kocuria polaris achieved >80% removal of C₁₁–C₃₀ n-alkanes, producing monocarboxylic and dicarboxylic acids via mono- and di-terminal oxidation (Yessentayeva et al., 2024). EN3’s propensity to form fluorinated esters may indicate novel enzyme activities or interactions with fluorinated additives often present in engine oils.
Pseudomonas aeruginosa Strains (EP4 and EP7)
Both EP4 and EP7 retained long-chain alkenes post-treatment while generating small halogenated compounds (Tables 10 and 12). In broader studies, P. aeruginosa isolates typically achieve 58–66% reduction of PAHs over 7 days, with catabolic genes (nahH, alkB) driving catechol and alkane oxidation pathways (Olowomofe et al., 2019). EP7’s marked increase in 1-Docosene (to 22.4%) suggests selective β-oxidation stopping points, potentially advantageous for producing value-added alkenes, echoing findings of focused alkene enrichment in other P. aeruginosa bioprocesses.
Indigenous Microbiota and Abiotic Contributions
The near-identical hydrocarbon profile shifts in the negative control and the consortium treatment highlight robust background activity from native soil microbiota and abiotic processes (volatilization, photolysis). Priolo Gargallo sediment consortia achieved ~95% crude oil and ~63% PAH degradation under induced conditions, driven by indigenous Alcanivorax and Cycloclasticus spp. (Santisi et al., 2029). These parallels underscore the necessity of baseline assessments (sterilized controls, isotopic tracing) to accurately attribute degradation to bioaugmentation versus natural attenuation.
Possible Degradation Mechanisms Utilised: Pathway Diversity and Byproduct Formation
β-Oxidation and Ring Formation: The universal rise in cyclic hydrocarbons (e.g., Cyclohexane) across treatments suggests conversion of linear alkanes via intramolecular cyclization following β-oxidation (Charalampous et al., 2021).
Dehalogenation: Consistent production of Trichloromethane by all inoculated treatments indicates widespread dehalogenase activities among phyllosphere isolates, mirroring reductive dehalogenation pathways reported in engineered consortia for halogenated pollutant removal (Silva et al., 2024).
Fluorinated Ester Formation: EN3’s accumulation of fluorinated esters represents a novel byproduct class, warranting further enzymatic characterization and toxicity evaluation.
Bioremediation Strategy from the findings
Our findings advocate for two complementary strategies:
1. Mixed Consortia for Broad Cleanup: Leveraging diverse metabolic pathways to target a wide hydrocarbon spectrum, as demonstrated by our consortium and corroborated by multi-strain systems achieving >90% PAH and TPH removal (Silva et al., 2024).
2. Specialized Isolates for Value-Added Intermediates: Utilizing strains like EP7 to enrich specific compounds (e.g., medium-chain alkenes) suitable for bioplastic precursors, aligning with emerging “biorefinery” models.
However, significant indigenous activity mandates rigorous controls and site-specific optimizations to prevent overestimation of inoculated strains’ contributions.
Limitations and Future Directions
Although GC–FID elucidates qualitative compositional shifts, it does not quantify mineralization or CO₂ evolution. Future studies should integrate:
1. Respirometry and Isotopic Labeling to measure actual carbon mineralization versus intermediate accumulation.
2. Metagenomics and Enzyme Assays to map catabolic gene abundance (e.g., alkB, nahH) and confirm pathway activations.
3. Toxicity Assessments, particularly for halogenated and fluorinated byproducts.
4. Pilot-scale trials to validate lab-scale efficacy under environmental heterogeneity.
CONCLUSION
Overall, GC-FID profiling revealed that phyllosphere bacteria, particularly Pseudomonas oleovorans (EP3) and Kocuria kristinae (EN3), effectively altered the hydrocarbon composition of spent engine oil. The appearance of shorter alkanes, halogenated intermediates, and peak number reductions highlights their degradation potential. However, the similar transformations observed in the negative control highlight the contribution of indigenous processes, emphasizing the need for further quantification of mineralization versus intermediate accumulation in future field studies.
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INTRODUCTION 

The increasing prevalence of hydrocarbon 

pollution due to industrial activities, oil spills, 

and energy production poses substantial 

environmental challenges (Atlas and Bartha, 

1992). These pollutants degrade ecosystems and 

threaten biodiversity and human health (Zhou et 

al., 2016). Bioremediation has emerged as a 

viable strategy to mitigate the impact of 

hydrocarbon contamination, particularly by 

using microorganisms that possess the innate 

ability to degrade these compounds (Rhoads et 

al., 2014). Among these microorganisms, 

phyllosphere bacteria have garnered attention 

for their potential role in biodegradation due to 

their unique ecological niches and metabolic 

capabilities (Rani et al., 2015). 

The phyllosphere represents a unique 

environment where diverse microbial 

communities thrive, and phyllosphere bacteria 

have shown promise in bioremediation, 

particularly in the degradation of hydrocarbons 

found in spent engine oil, petroleum, and its 

derivatives. These hydrocarbons pose significant 

environmental challenges due to their 

persistence and toxicity (Tian et al., 2018; 

Dellagnezze et al., 2014; Poddar et al., 2019). 

Gas Chromatography-Flame Ionization Detection 

(GC-FID) is a robust analytical tool for tracking 

hydrocarbon degradation due to its high 

sensitivity, precision, and ability to resolve 

complex mixtures (Tsioulpas et al., 2021). 

Unlike genomic or culture-based methods, GC-
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Abstract 

Monitoring hydrocarbon degradation is critical to assessing environmental pollution and the 

effectiveness of bioremediation strategies. Phyllosphere bacteria residing on plant surfaces 

have been shown to play a vital role in breaking down hydrocarbons; however, there is 

limited understanding of the compound-specific degradation patterns within the complex 

microbial communities present in the phyllosphere. This study evaluated the hydrocarbon-

degrading capacities of four phyllosphere-derived isolates (Kocuria kristinae EN3, 

Pseudomonas oleovorans EP3, Pseudomonas aeruginosa EP4, and EP7) and a mixed-species 

consortium in comparison to natural attenuation in simulated bioremediation of 

contaminated soil (soil micrococosm) using Gas chromatography-flame ionization (GC-FID) 

analysis. Soil microcosms were amended with 5 g kg⁻¹ spent engine oil and inoculated with 

either individual isolates (~10⁸ CFU g⁻¹), the consortium (equal proportions of all four 

strains), or left uninoculated (natural attenuation). Incubation proceeded for 60 days at 28 

°C under aerobic conditions. GC- FID analyzed Hydrocarbon profiles at day 0 and day 60 to 

quantify relative peak areas and identify emergent byproducts. Results revealed that the 

consortium achieved a 2-fold increase in 1-Docosene (from 14.3% to 29.5% area) and 

produced shorter alkanes (Hexadecane, 0.20%; 1-Hexane, 0.99%). Individual strains 

displayed divergent patterns: EP3 eliminated mid-chain alkanes and generated halogenated 

byproducts (e.g., trichloromethane, 0.52%), EN3 uniquely accumulated a fluorinated ester 

(Octacosyl heptafluorobutyrate, 13.7%), and EP7 selectively enriched 1-Docosene (22.4%). 

Natural attenuation mirrored many effects of the consortium, with cyclic hydrocarbons 

(Cyclohexane) increasing from 0.71% to 15.2%, indicating substantial indigenous activity. 

In conclusion, this study highlights the efficacy of GC-FID in tracking hydrocarbon 

degradation and the potential of phyllosphere bacteria in bioremediation. Future research 

should focus on optimizing bacterial consortia for field-scale applications. 

Keywords: Hydrocarbon-degradation, GC-FID, phyllosphere bacteria, bioremediation, 

aliphatic hydrocarbons, PAHs 

 

