An Overview on the Application of Bacteriophage Therapy in Combating Antibiotics Resistance: A Review

Authors

  • Aishat A. F. Department of Microbiology Kebbi State University of Science and Technology Aliero https://orcid.org/0000-0001-6615-3892
  • Manga S. B. Department of Microbiology Usman Danfodio University Sokoto
  • I. O. Obaroh. Department of Animal and Environment Biology Kebbi State University of Science and Technology
  • Bioku R. J. Bioraj Pharmaceutical Nigeria Limited, Ilorin
  • Abdulkadir B. Department of Microbiology Umaru Musa Yaradua University Katsina

DOI:

https://doi.org/10.47430/ujmr.2161.015

Keywords:

Antibiotic resistance, Antimicrobial, Bacteriophage, Biofilms, Multidrug resistance, Phage, Phage safety, Therapy

Abstract

Abstract

The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies  on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins, specifically against multidrug resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic- based, have relative advantages and disadvantages accordingly. Many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infections. Although much is still unknown about the interactions between phage, bacteria, and human host, the time to take phage therapy seriously seems to be rapidly approaching

Downloads

Download data is not yet available.

References

Abedon,, S. T. (2015). Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages. Pharmaceuticals (Basel); 8: 525-558.

https://doi.org/10.3390/ph8030525

Ackermann, H. W. (2011). The first phage electron micrographs. Bacteriophage; 1: 225-227.

https://doi.org/10.4161/bact.1.4.17280

Amorena, B., Gracia, E., Monzón, M., Leiva, J., Oteiza C., Pérez, M., Alabart, J. L. and Hernández-Yago, J. (1999). Antibiotic Susceptibility Assay for Staphylococcus aureus in Biofilms developed In-vitro. Antimicrob. Chemother. Journal; 44: 43-55.

https://doi.org/10.1093/jac/44.1.43

Arias, C. A. and Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st Century - a clinical super-challenge. N. Engl. J. Med; 360(5), 439-443.

https://doi.org/10.1056/NEJMp0804651

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. and Piddock, L. J. V. (2015). Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol; 13(2): 42-51.

https://doi.org/10.1038/nrmicro3380

Broxmeyer, L., Sosnowska, D., Miltner, E., Chacon, O. and Wagner, D. (2002). Killing of Mycobacterium avium and Mycobacterium tuberculosis by Mycobacteriophage delivered by a non- virulent Mycobacterium. Infect. Dis. journal; 186(8): 1155-1160.

https://doi.org/10.1086/343812

CDC. (2013). Antibiotic Resistance Threats in the United States. Centre of Diseases Control and Prevention, USA.

Chan, B. K., Abedon, S. T. and Loc-Carrillo, C. (2013). Phage Cocktails and the Future of Phage Therapy. Future Microbiol; 8: 769-783.

https://doi.org/10.2217/fmb.13.47

Chanishvili, N. (2012). Phage therapy--history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res; 83: 3-40 [PMID: 22748807 DOI: 10.1016/B978- 0-12-394438-2.0000 1-3]

https://doi.org/10.1016/B978-0-12-394438-2.00001-3

Chhibber, S. and Kumari, S. (2012). Application of Therapeutic Phages in Medicine. Bacteriophages, Dr. Ipek Kurtboke (Ed.); ISBN: 978-953.

https://doi.org/10.5772/34296

Clokie, M. R. J., Millard, A. D., Letarov, A. V. and Heaphy, S. (2011). Phages in Nature. Bacteriophage Journal; 1: 31-45.

https://doi.org/10.4161/bact.1.1.14942

Cox, L. M. and Blaser, M. J. (2016). Antibiotics in Early Life and Obesity. Nat. Rev. Endocrinol; 11: 182-190.

https://doi.org/10.1038/nrendo.2014.210

D'herelle, F. (2007). On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res. Microbiol; 158(7): 553-554.

https://doi.org/10.1016/j.resmic.2007.07.005

Félix d'Hérelle. (1949). The bacteriophage. Science News; 14: 44-59.

Félix d'Hérelles. (1917). Su run microbe invisible antagoniste des bacilles dysentériques. Comptes rendus Acad Sci Paris; 165: 373-375.

Forterre, P. (2016). To be or not to be alive: How Recent Discoveries Challenge the Traditional Definitions of Viruses and Life. Stud. Hist. Philos. Sci; 59: 100- 108.

https://doi.org/10.1016/j.shpsc.2016.02.013

French, G. (2010). The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents; 36: 53-57.

https://doi.org/10.1016/S0924-8579(10)70003-0

Gabisoniya, T. G., Loladze, M. Z., Nadiradze, M. M., Chakhunashvili, N. K., Alibegashvili, M. G., Tamarashvili, N. G. and Pushkina, V.A. (2016). Effects of Bacteriophages on Biofilm Formation by Strains of Pseudomonas aeruginosa: Appl. Biochem. Microbiol; 52: 293 297.

https://doi.org/10.1134/S0003683816030042

Galtier, M., De Sordi, L., Maura, D., Arachchi, H., Volant, S., Dillies, M. A. and Debarbieux, L. (2016). Bacteriophages to Reduce Gut Carriage of Antibiotic Resistant Uropathogens with Low Impact on Microbiota Composition: Environ. Microbiol; 18: 2237-2245.

https://doi.org/10.1111/1462-2920.13284

Gill, J. J. and Hyman, P. (2010). Phage Choice, Isolation and Preparation for Phage Therapy: Curr. Pharm. Biotechnol; 11(1): 2-14.

https://doi.org/10.2174/138920110790725311

Goff, D. A. (2011). Antimicrobial stewardship: bridging the gap between quality care and cost. Curr. Opin. Infect. Dis. 24, S11.

https://doi.org/10.1097/01.qco.0000393484.17894.05

Gootz, T. D. (2010). The global problem of antibiotic resistance. Crit. Rev. Immunol; 30(1), 79 93.

https://doi.org/10.1615/CritRevImmunol.v30.i1.60

Granowitz, E. V. and Brown, R. B. (2008). Antibiotic adverse reactions and drug interactions. Crit Care Clin; 24: 421-422.

https://doi.org/10.1016/j.ccc.2007.12.011

Hsu, J., Abad, C., Dinh, M. and Safdar, N. (2010). Prevention of endemic healthcare-associated Clostridium difficile infection: reviewing the evidence. Am. J. Gastroenterol; 105(11): 2327-2339.

Ippolito, G., Leone, S, Lauria, F. N., Nicastri, E. and Wenzel, R. P. (2010). Methicillin- resistant Staphylococcus aureus: the superbug. Int. J. Infect. Dis; 14(Suppl. 4), S7-S11.

https://doi.org/10.1016/j.ijid.2010.05.003

Kasman, L. M., Kasman, A., Westwater, C., Dolan, J. and Schmidt, M. (2002). Overcoming thePhage Replication Threshold: A Mathematical Model with Implications for Phage Therapy. Journal of Virology; 76(11): 5557-5564.

https://doi.org/10.1128/JVI.76.11.5557-5564.2002

Koskella, B. and Meaden, S. (2013). Understanding Bacteriophage Specificity in Natural Microbial Communities. Viruses Journal; 5: 806-823.

https://doi.org/10.3390/v5030806

Kutateladze, M. and Adamia, R. (2010). Bacteriophages as Potential New Therapeutics to Replace or Supplement Antibiotics. Trends in Biotechnology; 28: 591-595.

https://doi.org/10.1016/j.tibtech.2010.08.001

Kutter, E., De Vos, D. and Gvasalia, G. (2010). Phage therapy in clinical practice: treatment of human infections. Curr. Pharmaceu. Biotechnol; 11(1): 69-86.

https://doi.org/10.2174/138920110790725401

Lee, A. S, Huttner, B. and Harbarth, S. (2011). Control of methicillin-resistant Staphylococcus aureus. Infect. Dis. Clin. N. Am; 25(1): 155-179.

https://doi.org/10.1016/j.idc.2010.11.002

Livermore, D. M, Warner, M., Mushtaq, S., Doumith, M., Zhang, J. and Woodford, N. (2011). What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents; 37(5): 415-419.

https://doi.org/10.1016/j.ijantimicag.2011.01.012

Lu, T. and Koeris, M. S. (2011). The Next Generation of Bacteriophage Therapy. Curr. Opinion Microbiol; 14(5): 524-531.

https://doi.org/10.1016/j.mib.2011.07.028

Mao, C., Liu, A. and Cao, B. (2009). Virus-based chemical and biological sensing. Angew Chem Int Ed; 48: 6790-6810

https://doi.org/10.1002/anie.200900231

Markoishvili, K., Tsitianadze, G. and Katsarava, R. (2002). A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol; 41: 453-458.

https://doi.org/10.1046/j.1365-4362.2002.01451.x

Matsuzaki, S. 1., Yasuda, M., Nishikawa, H., Kuroda, M. and Ujihara, T. (2003). Experimental Protection of Mice against Lethal Staphylococcus aureus Infection by Novel Bacteriophage fMR11. J. Infect. Dis; 187(4): 613-624.

https://doi.org/10.1086/374001

Merabishvili, M., Pirnay, J. P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., Lavigne, R., Volckaert, G., Mattheus, W. and Verween, G. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One; 4: e4944 [PMID: 19300511 DOI:

https://doi.org/10.1371/journal.pone.0004944

Metsälä, J., Lundqvist, A., Virta, L. J., Kaila,M., Gissler, M. and Virtanen, S. M. (2015). Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy; 45: 137-145 [PMID: 24943808 DOI:

https://doi.org/10.1111/cea.12356

Motlagh, A. M., Bhattacharjee, A. S. and Goel, R. (2016). Biofilm Control with Natural and Genetically-modified Phages. World Journal Microbiol. Biotechnol; 32: 67-69

Paul, J. H. and Sullivan, M. B. (2005). Marine Phage Genomics: What have we Learned? Current Opinion in Biotechnology; 16: 299-307.

https://doi.org/10.1016/j.copbio.2005.03.007

Qadir, M. I. (2015). Phage Therapy: A Modern Tool to Control Bacterial Infections. Pak Journal Pharmaceutical Sci; 28: 265-270.

Rea, K., Dinan, T. G. and Cryan, J. F. (2016). The Microbiome: A Key Regulator of Stress and Neuroinflammation. Neurobiol. Stress; 4: 23-33.

https://doi.org/10.1016/j.ynstr.2016.03.001

Reardon, S. (2015). Phage Therapy gets Revitalized. Nature; 510: 15-16.

https://doi.org/10.1038/510015a

Ryan, E. M., Gorman, S. P., Donnelly, R. F. and Gilmore, B. F. (2011). Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol; 63: 1253-

https://doi.org/10.1111/j.2042-7158.2011.01324.x

Saleem, A. F., Ahmed, I, Mir, F., Ali, S. R and Zaidi, A. K. M. (2009). Pan-resistant acinetobacter infection in neonates in Karachi, Pakistan. J. Infect. Develop. Countries; 4(1): 30-37.

Samson, J. E., Magadán, A. H., Sabri, M. and Moineau, S. (2013). Revenge of the phages: defeating bacterial defences. Nature; 11: 675.

https://doi.org/10.1038/nrmicro3096

Servick, K. (2016). Drug Development. Beleaguered Phage Therapy Trial Presses on. Science; 352: 1506.

https://doi.org/10.1126/science.352.6293.1506

Shehab, N., Patel, P. R., Srinivasan, A. and Budnitz, D.S. (2008). Emergency Department Visits for Antibiotic- associated Adverse Events. Clin. Infect. Dis; 47: 735-743.

https://doi.org/10.1086/591126

Stanford, K., McAllister, T. A., Niu, Y. D., Stephens, T. P., Mazzocco, A., Waddell, T. E. and Johnson, R. P. (2010). Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot; 73: 1304-1312.

https://doi.org/10.4315/0362-028X-73.7.1304

Suttle, C. A. (2007). Marine viruses--major players in the global ecosystem. Nat Rev Microbiol; 5: 801-812.

https://doi.org/10.1038/nrmicro1750

Wang, J. L, Hsueh, P. R. (2009). Therapeutic options for infections due to vancomycin-resistantExpert Opin. Pharmacother. 10(5), 785-796.

https://doi.org/10.1517/14656560902811811

Westwater, C., Kasman, L. M., Schofield, D. A. and Norris, J. S. (2003). Use of Genetically Engineered Phage to Deliver Antimicrobial Agents to Bacteria: An Alternative Therapy for Treatment of Bacteria Infection. Antimicrob. Agents Chemother; 47: 1301-1307.

https://doi.org/10.1128/AAC.47.4.1301-1307.2003

Wittebole, X., De Roock, S. and Opal, S. M. (2014). A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens. Virulence; 5: 226-235.

https://doi.org/10.4161/viru.25991

Zavascki, A. P, Carvalhaes, C. G, Picão, R. C. and Gales, A. C. (2010). Multidrug- resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev. Anti Infect. Ther; 8(1): 71-93.

https://doi.org/10.1586/eri.09.108

Downloads

Published

30-06-2021

How to Cite

Aishat A. F., Manga S. B., I. O. Obaroh., Bioku R. J., & Abdulkadir B. (2021). An Overview on the Application of Bacteriophage Therapy in Combating Antibiotics Resistance: A Review. UMYU Journal of Microbiology Research (UJMR), 6(1), 113–119. https://doi.org/10.47430/ujmr.2161.015

Most read articles by the same author(s)