Screening of Heavy Metals Tolerance among Beta-Lactamase Producing Bacteria from Contaminated Soil and Waste Water of Some Abattoirs in Adamawa State
DOI:
https://doi.org/10.47430/ujmr.25103.001Keywords:
Heavy metals, Tolerance, ESBL, Metallo β-LactamaseAbstract
Bacterial adaptability enables them to tolerate various stresses, including those from antibiotics and heavy metals. This study aims to investigate the tolerance to heavy metals, as well as the production of beta-lactamase and metallo-beta-lactamase, in bacterial isolates from abattoir-contaminated sites in Adamawa State. Samples were analyzed using standard microbiological techniques. Bacterial isolates with a MAR index above 0.4 were screened for tolerance to heavy metals (Cu, Zn, Fe, Co, and Pb) at concentrations of 50, 150, and 300 ppm, respectively. Extended-spectrum β-lactamase activity (ESBL) was detected on Mueller-Hinton agar using the Kirby-Bauer double disk diffusion method. Metallo-beta lactamase activity was determined using Imipenem (IMP) – EDTA Combine disc. All isolates exhibited varying levels of growth, except for Chromobacterium spp., which showed no growth at any concentration. However, Pseudomonas aeruginosa and Escherichia coli were able to grow in the presence of all heavy metal concentrations, except for zinc at concentrations of 150 and 300 ppm. Extended-spectrum β-lactamase (ESBL) production and the detection of metallo-β-lactamase activity showed that the isolates were positive for the test at different intensities, with respect to the clarity of the zones; however, Pseudomonas aeruginosa and Escherichia coli had the highest zones (> 5 mm) with amoxicillin-clavulanic acid. Some were positive for metallo-β-lactamase activity, but at different levels with respect to the clarity of the zones. E. coli showed the highest increase in zone with an Imipenem (IMP) EDTA disk of> 7 mm, followed by P. aeruginosa. These potentials can give prior information about the two isolates with respect to the hazard they present in the immediate environment.
Downloads
References
Abd El-Baky, R. M., Abd El-Azeim, N. H., & Gad, G. F. M. (2013). Prevalence of extended spectrum beta lactamase, AmpC beta lactamase, and metallo beta lactamase among clinical isolates of P. aeruginosa. Journal of Advanced Biotechnology and Bioengineering, 1, 22-29. https://doi.org/10.12970/2311-1755.2013.01.01.3
Abdul-Gafar, H. B. (2006). Analysis of surface and ground water pollution from abattoir waste: A case study of Minna abattoir [Unpublished bachelor's thesis]. Department of Agricultural Engineering, Federal University of Technology Minna.
Abdullahi, I. M., Ahmed, A. A., & Dauda, T. E. (2020). Determination of levels of heavy metals and physicochemical parameters in waste water of Kasuwan shanu abattoir, Maiduguri. Journal of Chemistry Letters, 1, 84-88.
Adekanmbi, A. O., & Falodun, O. I. (2015). Physicochemical, microbiology and heavy metals studies on water samples and bacteria obtained from Dandaru River in Ibadan, South Western Nigeria. African Journal of Microbiology Research, 9, 1357-1365. https://doi.org/10.5897/AJMR2015.7388
Adelegan, J. A. (2002). Policy and slaughterhouse waste in Nigeria. Proceedings of the 28th WEDC Conference (pp. 3-6). Kolkata, India.
Adesemoye, A. O., Opere, B. O., & Makinde, S. C. O. (2006). Microbial content of abattoir wastewater and its contaminated soil in Lagos, Nigeria. African Journal of Biotechnology, 5(20), 1963-1968.
Adesina, A. O., Ogunyebi, A. L., Fingesi, T. S., & Oludoy, E. (2018). Assessment of Kara Abattoir Effluent on the Water Quality of Ogun River. Nigerian Journal of Science and Environmental Management, 22(9), 1465-1470. https://doi.org/10.4314/jasem.v22i9.17
Adeyemi, I. G., & Adeyemo, O. K. (2007). Waste management practices at the Bodija abattoir, Nigeria. International Journal of Environmental Studies, 64(1), 71-82. https://doi.org/10.1080/00207230601124989
Adeyemo, O. K., Adeyemi, I. G., & Odunsi, O. O. (2019). Physicochemical, heavy metals and microbial pollution of surface and ground water in bodija Municipal Abattoir and its Environs. International Journal of Environment, Agriculture and Biotechnology, 4(6). https://doi.org/10.22161/ijeab.46.13
Akan, J. C., Abdulrahman, F. I., & Yusuf, E. (2010). Physical and chemical parameters in abattoir wastewater sample. Pacific Journal of Science and Technology, 11(1), 640-648.
Akinduti, P. A., Ejilude, O., Motayo, B. O., & Adeyokinu, A. F. (2012). Emerging multidrug resistant AmpC beta-lactamase and carbapenemase Enteric isolates in Abeokuta, Nigeria. Nature and Science, 10, 70-74.
Aliyu, M., Ibrahim, K. H., & Abubakar, M. A. (2021). Sexual dysfunction and infertility amongst spouses in Adamawa state, Nigeria. American Journal of Health Research, 9, 1-8. https://doi.org/10.11648/j.ajhr.20210901.11
Bandaw, T., & Herago, T. (2019). Review of abattoir waste management. Global Veterinaria, 19(2), 517-524.
Behera, B., Das, A., Mathur, P., & Kapil, A. (2008). High prevalence of carbapenem resistant Pseudomonas aeruginosa at a tertiary care centre in north India. Are we under-reporting? Indian Journal of Medical Research, 128, 324-332.
Bello, B. V., Qadeer, M. A., & Oladapo, B. S. Effect of abattoir wastes on surface and underground water qualities in Yola Metropolis, Adamawa State, Nigeria. FUW Trends in Science & Technology Journal, 8(2), 184-191.
Canton, R., Novais, A., Valverde, A., Machado, E., Peixe, L., Baquero, F., & Coque, T. M. (2012). Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 14(1), 144-153. https://doi.org/10.1111/j.1469-0691.2007.01850.x
Chakraborty, D., Basu, S., & Das, S. (2010). A study on infections caused by Metallo-Beta-lactamase Producing Gram-Negative Bacteria in Intensive Care Unit Patients. American Journal of Infectious Diseases, 6(2), 34-39. https://doi.org/10.3844/ajidsp.2010.34.39
Chukwu, O., Mustapha, H. A., & Abdul-Gafar, H. B. (2008). The effect of abattoir waste on surface water quality. Environmental Research Journal, 2(6), 334-338.
Deredjian, A., Colinon, C., Brothier, E., et al. (2011). Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa. Research in Microbiology, 162, 689-700. https://doi.org/10.1016/j.resmic.2011.07.003
Eghomwanre, A. F., Obayagbona, N. O., Osarenotor, O., & Enagbonma, B. J. (2016). Evaluation of antibiotic resistance patterns and heavy metals tolerance of some bacteria isolated from contaminated soils and sediments from Warri, Delta State, Nigeria. Journal of Applied Science and Environment, 20(2), 287-291. https://doi.org/10.4314/jasem.v20i2.8
Ejikeugwu, C., Duru, C., Eluu, S., Oguejiofor, B., Ezeador, C., Ogene, L., & Iroha, I. (2017). Isolation and phenotypic detection of Metallo-Beta-Lactamase (MBL)-producing Klebsiella species from cow anal swabs. Global Journal of Pharmaceutical Science, 2(3), 555-586. https://doi.org/10.19080/GJPPS.2017.02.555586
Ejikeugwu, C., Iroha, I., Orji, J., Ugwu, M., & Okonkwo, E. (2015). Antibiogram of ESBL-producing P. aeruginosa isolates of nosocomial origin. European Journal of Pharmaceutical and Medical Research, 2, 92-99.
Ejikeugwu, C., Nworie, O., Agah, M. V., Oguejiofor, B., Ovia, K., Nworie, C. O., Iwunze, A. C., Nwambeke, A., & Edeh, C. (2018). Bacteriological and antibiogram of AmpC producing Enterobacteriaceae isolated from Abattoir. Microbiology Current Research, 82(2), 37-41.
Ejikeugwu, C., Nworie, O., Saki, M., Al-Dahmoshi, H. O., Al-Khafaji, N. S., Ezeador, C., & Adikwu, M. U. (2021). Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BMC Microbiology, 21, 1-9. https://doi.org/10.1186/s12866-021-02179-1
Ejikeugwu, P. C., Ugwu, C. M., Iroha, I. R., Eze, P., Gugu, T. H., & Esimone, C. O. (2014). Phenotypic detection of Metallo-β-Lactamase enzyme in Enugu, Southeast Nigeria. American Journal of Biological, Chemical and Pharmaceutical Science, 2(2), 1-6.
Emokaro, C. O., & Dibiah, O. (2014). Demand analysis for chicken meat, beef and fish among urban households in Edo and Delta states, Nigeria. Journal of Applied and Natural Science, 6(1), 239-245. https://doi.org/10.31018/jans.v6i1.408
European Centre for Disease Prevention and Control. (2013). Factsheet for experts. http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/basic_facts/Pages/factsheet_experts.aspx
Fitsum, D. (2014). Prevalence and antimicrobial resistance profile of Escherichia coli O157:H7 in goat slaughtered in Dire Dawa Municipal Abattoir as well as food safety knowledge, attitude and hygiene practice assessment among slaughter staff, Ethiopia [Master's thesis]. Addis Ababa University.
Freitas, A. L., Machado, D. P., Soares, F. S. C., & Barth, A. L. (2003). Extended spectrum beta-lactamase in klebsiella spp. and Escherichia coli obtained in a Brazilian teaching hospital: Detection, prevalence and molecular typing. Brazilian Journal of Microbiology, 34, 344-348. https://doi.org/10.1590/S1517-83822003000400012
Harvey, D. (2016). Solutions manual to analytical chemistry 2.1. McGraw-Hill. http://www.who.int/mediacentre/factsheets/fs194/en/
Ire, F. S., Miriam, O. A., & Ossai-Chidi, L. N. (2017). Microbiological and physiochemical assessment of abattoir effluents and receiving water bodies in Port Harcourt. Journal of Pharmaceutical, Chemical and Biological Sciences, 5(1), 34-39.
Iroha, I. R., Eromonsele, O. B., Moses, I. B., Afukwa, F. N., Nwakaeze, A. E., & Ejikeugwu, P. C. (2016). In vitro antibiogram of multidrug resistant bacteria isolated from Ogbete Abattoir Effluent in Enugu State, Nigeria. International Research Journal of Public and Environmental Health, 3, 1-6.
Ja'afaru, M. I., Adeyemo, O. M., Okafor, C. H., & Bristone, P. (2021). Effects of abattoir effluents on heavy metal tolerance, bacteriological quality and physicochemical parameters of contaminated soil in Yola, Adamawa State, Nigeria. Nigeria Annals of Pure and Applied Sciences, 4(1), 1-14. https://doi.org/10.46912/napas.228
Leung, G. H., Gray, T. J., Cheong, E. Y., Haertsch, P., & Gottlieb, T. (2013). Persistence of related bla-IMP-4 Metallo-Beta Lactamase producing Enterobacteriaceae from clinical and environmental specimens within a burns unit in Australia - a six-year retrospective study. Antimicrobial Resistance and Infection Control, 2(1), 35. https://doi.org/10.1186/2047-2994-2-35
Lima e Silva, A. A., Ribeiro de Carvalho, M. A., de Souza, S. A. L., Teixeira Dias, P. M., da Silva Filho, R. G., de Meirelles Saramago, C. S., de Melo Bento, C. A., & Hofer, E. (2012). Heavy metal tolerance in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43, 1620-1631. https://doi.org/10.1590/S1517-83822012000400047
Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119-146. https://doi.org/10.1146/annurev.biochem.78.082907.145923
Obijiofor, O. C., Okoye, P. A. C., & Ekejiuba, I. O. C. (2018). Assessment of surface water contamination and effect of textile effluents on Ibeshe River, Ikorodu, Lagos, Nigeria. Journal of Chemical Society of Nigeria, 43(2), 69-79.
Ogbonna, D. N., Abu, G. O., & Okoli, C. (2020). Heavy metal contamination in abattoir wastes and soils around abattoirs in Port Harcourt, Nigeria. International Journal of Environmental Sciences & Natural Resources, 24(1), 1-7. https://doi.org/10.19080/IJESNR.2020.24.556128
Ojegunle, O. Z., & Lateef, S. T. (2017). Environmental impacts of abattoir waste discharge on the quality of surface and ground water in Abeokuta. Journal of Environmental and Analytical Toxicology, 7(5).
Rabah, A. B., Oyeleke, S. B., Manga, T. B., Hassan, L. G., & Ijah, U. J. (2010). Microbiological and physicochemical assessment of soil contaminated with abattoir effluents in Sokoto metropolis, Nigeria. Science World Journal, 5, 21-42. https://doi.org/10.4314/ijbcs.v5i1.68118
Savin, M., Bierbaum, G., Hammerl, J. A., Heinemann, C., Parcina, M., Sib, E., Voigt, A., & Kreyenschmidt, J. (2020). ESKAPE bacteria and extended-spectrum-β-lactamase-producing Escherichia coli isolated from wastewater and process water from German poultry slaughterhouses. Applied and Environmental Microbiology, 86, e02748-19. https://doi.org/10.1128/AEM.02748-19
Stanley, C. O., Collins, O. O., Bruno, C. A., & Faith, C. N. (2016). Distribution of antibiotic resistant bacteria from abattoir wastes and its receiving waters at Nkwo-ezzamgbo, Ebonyi State, Nigeria. World Journal of Medical Sciences, 13(4), 242-250.
Tamer, A., Aysenur, K., & Sadik, D. (2013). Antibiotic levels and heavy metal resistance in gram-negative bacteria isolated from seawater, Iskenderum organized industrial zone. Journal of Applied Biological Sciences, 7, 10-14.
Vashishth, A., & Khanna, S. (2015). Toxic heavy metals tolerance in bacterial isolates based on their inducible mechanism. International Journal of Novel Research in Life Science, 2, 34-41.
World Health Organization. (2010). The world health report - health systems financing: The path to universal coverage. http://www.who.int/entity/whr/2010/whr10_en.pdf
Yilmaz, E. I. (2013). Metal tolerance and bio-sorption capacity of Bacillus Circulans strain EBT. Journal of Research on Microbiology, 154, 409-415. https://doi.org/10.1016/S0923-2508(03)00116-5
Yong, D., Lee, K., Yum, J. H., Shin, H. B., Rossolini, G. M., & Cong, Y. (2002). Imipenem-EDTA disc method for differentiation of metallo-beta-lactamase producing clinical samples of pseudomonas spp. and Acinetobacter spp. Journal of Clinical Microbiology, 40(10), 3798-3801. https://doi.org/10.1128/JCM.40.10.3798-3801.2002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ja’afaru, M. I., Bristone J Pola, Pukuma, M. S., Emmanuel Ijabani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.