Cytological effects of Dimethoate and Lambda-Cyhalothrin on Pollen Grain Cells Reproduction and Development
DOI:
https://doi.org/10.47430/ujmr.25103.006Keywords:
Cytology, Cowpea, Pesticides, Pollen grainAbstract
Study’s Excerpt:
- Pollen exine thickness decreased most in A+B (10 mL/L) but increased with A (40 mL/L).
- Lambda-Cyhalothrin (B) at 10 mL/L yielded the largest pollen grain width.
- Cellular abnormalities rose with pesticide concentration, peaking at 31% in A (50 mL/L).
- Pesticides altered pollen morphology, showing dose-dependent cytotoxic effects.
- Findings highlight reproductive risks of pesticides and the need for safer agro-practices.
Full Abstract:
This study investigates the effects of Dimethoate (A) and Lambda-Cyhalothrin (B) on pollen grain cells in the soil at various concentrations. Lowest exine thickness was observed in soil treated with a combination of Dimethoate and Lambda-Cyhalothrin (A+B) at 10mL/L. Dimethoate (A) at 40mL/L increased exine thickness, while Lambda-Cyhalothrin (B) and the combination (A+B) enhanced pollen grain size and circumference. Pollen grain width was largest in soils treated with Lambda-Cyhalothrin (B) at 10mL/L. Additionally, cellular abnormalities, including stickiness, surface deformation, shrinkage, irregular shapes, and size variation, increased with an increase in pesticide concentration. Dimethoate (A) induced the most severe cellular abnormalities, particularly at 50mL/L, with a peak of 31% abnormal cells, compared to 27.3% in Lambda-Cyhalothrin (B) and 20.5% in the combination (A+B). The results indicate significant alterations in exine thickness, pollen grain circumference, and pollen grain width. These findings suggest a dose-response relationship between pesticide concentration and cellular disruption. The study emphasises the potential cytotoxic effects of Dimethoate and Lambda-Cyhalothrin on plant reproduction and development, highlighting the need for sustainable agricultural practices to mitigate pesticide-induced harm. Further research is necessary to explore the molecular mechanisms of these cytological changes and develop strategies to minimise pesticide toxicity in crops.
Downloads
References
Agrawal, A., & Sharma, B. (2010). Pesticides induce oxidative stress in mammalian systems. International Journal of Biology and Medical Research, 1(3), 90-104.
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticide toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 1-42. https://doi.org/10.3390/toxics9030042
Ali, Z. Y. (2012). Neurotoxic effect of lambda-cyhalothrin, a synthetic pyrethroid pesticide: Involvement of oxidative stress and protective role of antioxidant mixture. New York Science Journal, 5, 93-103.
Aminu, H. A. (2020). Arbuscular mycorrhizal fungi as a potential biocontrol agent against vascular wilt of cowpea (Vigna unguiculata L. Walp) in Katsina Nigeria [Master's dissertation, Unpublished].
Araújo, M. F., Castanheira, E. M., & Sousa, S. F. (2023). The buzz on insecticides: A review of uses, molecular structures, targets, adverse effects, and alternatives. Molecules, 28(8), 3641. https://doi.org/10.3390/molecules28083641
Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., & Devkota, H. P. (2019). Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biological Interactions, 308, 294-303. https://doi.org/10.1016/j.cbi.2019.05.050
Bawa, Y. M., Kalimullah, S., & Wagini, N. H. (2025). The effects of pesticide application on soil microbiota and weed dynamics in cowpea cropping systems. UMYU Scientifica, 4(1), 150-159. https://doi.org/10.56919/usci.2541.015
Bhagyawant, S. S., & Srivastava, N. (Eds.). (2015). Plant biotechnology. Horizon Books.
Candan, F., & Öztürk, Ç. (2015). Studies on the comparison of pollen morphology and viability of four naturally distributed and commercial varieties of Anemone coronaria L. Pakistan Journal of Botany, 47(2), 517-522.
Daneshvar, A., Tigabu, M., Karimidoost, A., & Odén, P. C. (2017). Flotation techniques to improve viability of Juniperus polycarpos seed lots. Journal of Forestry Research, 28, 231-239. https://doi.org/10.1007/s11676-016-0306-2
García, M. G., Sánchez, J. I. L., Bravo, K. A. S., Cabal, M. D. C., & Pérez-Santín, E. (2022). Presence, distribution, and current pesticides used in Spanish agricultural practices. Science of the Total Environment, 845, 157291. https://doi.org/10.1016/j.scitotenv.2022.157291
Hatamleh, A. A., Danish, M., Al-Dosary, M. A., El-Zaidy, M., & Ali, S. (2022). Physiological and oxidative stress responses of Solanum lycopersicum (L.) (tomato) when exposed to different chemical pesticides. RSC Advances, 12(12), 7237-7252. https://doi.org/10.1039/D1RA09440H
Kébé, K., Alvarez, N., Tuda, M., Arnqvist, G., Fox, C. W., Sembène, M., & Espíndola, A. (2017). Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. Journal of Biogeography, 44(11), 2515-2526. https://doi.org/10.1111/jbi.13052
Laane, H. M. (2018). The effects of foliar sprays with different silicon compounds. Plants, 7(2), 45. https://doi.org/10.3390/plants7020045
Lazaridi, E., & Bebeli, P. J. (2023). Cowpea constraints and breeding in Europe. Plants, 12(6), 1339. https://doi.org/10.3390/plants12061339
Martin-Reina, J., Duarte, J. A., Cerrillos, L., Bautista, J. D., & Moreno, I. (2017). Insecticide reproductive toxicity profile: Organophosphate, carbamate and pyrethroids. Journal of Toxins, 4(1), 7. https://doi.org/10.13188/2328-1723.1000019
Memela, U. (2022). The physiological effects of heat stress on anthesis and pollination in domesticated sunflowers (Helianthus annuus L.) [Doctoral dissertation, University of Pretoria].
Nateghi-A, F., & Rezaei‐Tabrizi, A. (2013). Nonlinear dynamic response of tall buildings considering structure-soil-structure effects. The Structural Design of Tall and Special Buildings, 22(14), 1075-1082. https://doi.org/10.1002/tal.753
Nevein, M. A., Gamil, M. A., & Nagi, F. I. (2014). Biological verification and quality assessment of a natural hepatoprotective recipe. International Journal of Pharmacy and Pharmaceutical Sciences, 6(6), 641-647.
Ngoula, F., Watcho, P., Kenfack, A., Manga, J. N. Z., Defang, H. F., Pierre, K., & Joseph, T. (2014). Effect of dimethoate (an organophosphate insecticide) on the reproductive system and fertility of adult male rat. American Journal of Pharmacology and Toxicology, 9(1), 75. https://doi.org/10.3844/ajptsp.2014.75.83
Ogbonnaya, E., Ahmad, A. R., Ile, E. B., & Ayuba, V. (2022). Assessment of phytotoxicity of selected botanical insecticides on treated cowpea (Vigna unguiculata) seed. Bulletin of the National Research Centre, 46(1), 171. https://doi.org/10.1186/s42269-022-00858-1
Oyewale, R., & Bamaiyi, L. (2013). Management of cowpea insect pests. Scholars Academic Journal of Biosciences, 1(5), 217-226.
Özkara, A., Akyil, D., & Konuk, M. (2016). Pesticides, environmental pollution, and health. In Environmental Health Risk - Hazardous Factors to Living Species. IntechOpen. https://doi.org/10.5772/63094
Parween, T., Bhandari, P., Jan, S., & Raza, S. (2016). Interaction between pesticide and soil microorganisms and their degradation: A molecular approach. In Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions (pp. 23-43). Springer. https://doi.org/10.1007/978-3-319-29573-2_2
Raina, A., Tantray, Y. R., & Khan, S. (2023). Assessment of bio-physiological damages and cytological aberrations in cowpea varieties treated with gamma rays and sodium azide. PLoS ONE, 18(7), e0288590. https://doi.org/10.1371/journal.pone.0288590
Rajak, P., Roy, S., Ganguly, A., Mandi, M., Dutta, A., Das, K., Nanda, S., Ghanty, S., & Biswas, G. (2023). Agricultural pesticides-friends or foes to the biosphere? Journal of Hazardous Materials Advances, 10, 100264. https://doi.org/10.1016/j.hazadv.2023.100264
Ranz, R. E. R. (2022). Insecticides: Impact and benefits of its use for humanity. BoD-Books on Demand.
Saad-Allah, K. M., Hammouda, M., & Kasim, W. A. (2014). Effect of sodium azide on growth criteria, some metabolites, mitotic index, and chromosomal abnormalities in Pisum sativum and Vicia faba. International Journal of Agronomy and Agricultural Research, 4(4), 46-61.
Saroop, S., & Tamchos, S. (2024). Impact of pesticide application: Positive and negative side. In Pesticides in a Changing Environment (pp. 155-178). Elsevier. https://doi.org/10.1016/B978-0-323-99427-9.00006-9
Setiawati, W., Muharam, A., Hasyim, A., Prabaningrum, L., Moekasan, T. K., Murtiningsih, R., & Mejaya, M. J. (2022). Growth, and yield characteristics as well as pests and diseases susceptibility of chili pepper (Capsicum annuum L.) under different plant densities and pruning levels. Applied Ecology and Environmental Research, 20(1). https://doi.org/10.15666/aeer/2001_543553
Simon-Delso, N., San Martin, G., Bruneau, E., Delcourt, C., & Hautier, L. (2017). The challenges of predicting pesticide exposure of honey bees at landscape level. Scientific Reports, 7(1), 3801. https://doi.org/10.1038/s41598-017-03467-5
Singh, A., Sharma, A., Singh, O., Rajput, V. D., Movsesyan, H. S., Minkina, T., & Ghazaryan, K. (2024). In-depth exploration of nanoparticles for enhanced nutrient use efficiency and abiotic stress management: Present insights and future horizons. Plant Stress, 11, 100576. https://doi.org/10.1016/j.stress.2024.100576
Sivaguru, M., Mander, L., Fried, G., & Punyasena, S. W. (2012). Capturing the surface texture and shape of pollen: A comparison of microscopy techniques. PLoS ONE, 7(6), e39129. https://doi.org/10.1371/journal.pone.0039129
Srivastava, A. K., & Singh, A. K. (2009). Effects of insecticide profenophos on germination, early growth, meiotic behaviour and chlorophyll mutation of barley (Hordeum vulgare L.). Acta Physiologiae Plantarum, 31, 1-8. https://doi.org/10.1007/s11738-008-0263-2
Tazerouni, Z., Ali, A. T., & Mehran, R. (2019). Cowpea: Insect pest management (pp. 1-48). Agricultural Research Center.
Tonfack, L. B., Foamouhoue, E. N., Tchoutang, D. N., & Youmbi, E. (2019). Application of pesticide combinations on watermelon affects pollen viability, germination, and storage. Journal of Applied Biology and Biotechnology, 7(6), 35-39. https://doi.org/10.7324/JABB.2019.70606
Tosi, S., Burgio, G., & Nieh, J. C. (2018). A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific Reports, 7, 1201. https://doi.org/10.1038/s41598-017-01361-8
Ward, S. E., Hoffmann, A. A., Van Helden, M., Slavenko, A., & Umina, P. A. (2024). The effects of insecticide seed treatments on the parasitism and predation of Myzus persicae (Homoptera: Aphididae) in canola. Journal of Economic Entomology, 117(1), 102-117. https://doi.org/10.1093/jee/toad236
Watts, M. (2010). Pesticides: Sowing poison, growing hunger, reaping sorrow. Pesticide Action Network Asia and the Pacific.
Wrońska-Pilarek, D., Maciejewska-Rutkowska, I., Lechowicz, K., Bocianowski, J., Hauke-Kowalska, M., Baranowska, M., & Korzeniewicz, R. (2023). The effect of herbicides on morphological features of pollen grains in Prunus serotina Ehrh. in the context of the elimination of this invasive species from European forests. Scientific Reports, 13(1), 4657. https://doi.org/10.1038/s41598-023-31010-2
Xiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., Ma, J., Weng, Y., & Yang, W. (2016). Genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp). PLoS ONE, 11(8), e0160941. https://doi.org/10.1371/journal.pone.0160941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bawa, Y. M., Kalimullah, S., Wagini, N. H., Abdullahi, M., Bello, I., Garga, M. A., Qabasiyu, M. M., Ma’aruf, M., Salihu, A. A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.