Characterization of Mammaliicoccus sciuri and Mannitol-Fermenting Staphylococci from Small Ruminants and Chickens in the Federal Capital Territory, Nigeria

Authors

  • Martha Echioda-Ogbole Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • James Agbo Ameh Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Samuel Mailafia Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Olatunde Hamza Olabode Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Maria Jessica Adah Bridget Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Ikoojo Charity Ikwe-Agada Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Odey E Odey Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
  • Edet E Udo Department of Microbiology, College of Medicine, Kuwait University, Kuwait

DOI:

https://doi.org/10.47430/ujmr.25103.008

Keywords:

Mammaliicoccus, Staphylococcus, chickens, sheep, Goats, antimicrobial resistance

Abstract

Study’s Excerpt:

  • Mammalicoccus sciuri was the most prevalent species (79%) in chickens, sheep, and goats.
  • AST showed 100% sensitivity to cefoxitin, penicillin, gentamicin, and ciprofloxacin.
  • Resistance was highest to trimethoprim (48.9%) among the isolates tested.
  • Multidrug resistance was observed in 10% of mannitol-fermenting non-S. aureus isolates.
  • Routine AST is recommended to monitor antimicrobial resistance in food-producing animals.

Full Abstract:

Mammalicoccus and Staphylococcus species are Gram-positive bacteria found on the skin and mucous membranes of some mammals.  This study aimed to identify, determine the species distribution, and assess the antimicrobial profile of mannitol-fermenting non- S. aureus species from chickens, sheep, and goats in the Federal Capital Territory, Nigeria.  Forty-seven isolates from chickens (n = 15), sheep (n = 18), and goats (n = 14) were screened using the Staph Latex Kit (Labmann, UK) and identified using the Analytical Profile Index Kit.  Antimicrobial susceptibility testing (AST) was performed using disk diffusion and E-test methods.  Mammalicoccus sciuri, Staphylococcus intermedius, and Staphylococcus xylosus were the three species identified. Mammaliccoccus sciuri was found to be the most predominant species with 79% (n=37) prevalence, followed by Staphylococcus intermedius with 15% (n = 7), while S. xylosus was the least common with 4.25% prevalence.  The AST results showed complete sensitivity of all isolates (100 %) to cefoxitin, penicillin, gentamicin, kanamycin, rifampicin, spectinomycin, and ciprofloxacin.  Isolates were, however, resistant to trimethoprim (48.93%), tetracycline (15%), erythromycin (9%), and amikacin (4%).  Ten percent of the isolates exhibited multidrug resistance.  This study documents a high occurrence of Mammalicoccus sciuri in small ruminants and chickens.  Periodic AST should be conducted to determine the level of antimicrobial use in food animals and to facilitate effective monitoring and reporting of AMR in animals.

Downloads

Download data is not yet available.

References

Adesoji, T. O., George, U. E., Sulayman, T. A., Uwanibe, J. N., Olawoye, I. B., Igbokwe, J. O., & Happi, C. T. (2024). Molecular characterization of non-aureus staphylococci and Mammaliicoccus from Hipposideros bats in Southwest Nigeria. Scientific Reports, 14(1), 6899. https://doi.org/10.1038/s41598-024-57190-z

Battaglia, M., & Garrett-Sinha, L. A. (2023). Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Laboratory Animal Research, 39(1), 18. https://doi.org/10.1186/s42826-023-00169-0

Bello, C. S., & Qahtani, A. (2006). Pitfalls in the routine diagnosis of Staphylococcus aureus. African Journal of Biotechnology, 5(10), 836–839.

Bora, P., Datta, P., Gupta, V., Singhal, L., & Chander, J. (2018). Characterization and antimicrobial susceptibility of coagulase-negative staphylococci isolated from clinical samples. Journal of Laboratory Physicians, 10(4), 414–419. https://doi.org/10.4103/JLP.JLP_55_18

Cheesbrough, M. (2016). District laboratory practice in tropical countries (2nd ed.). Cambridge University Press.

Chen, S., Wang, Y., Chen, F., Yang, H., Gan, M., & Zheng, S. J. (2017). A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets. PLoS ONE, 12(1), e0174213.

Clinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial disk susceptibility tests (13th ed.). CLSI standard M02. Clinical and Laboratory Standards Institute.

Clinical and Laboratory Standards Institute. (2020). Performance standards for antimicrobial susceptibility testing (30th ed.). CLSI supplement M100. Clinical and Laboratory Standards Institute.

de Moura, G. S., de Carvalho, E., Sanchez, E. M. R., Sellera, F. P., Marques, M. F., Heinemann, M. B., & Mota, R. A. (2023). Emergence of livestock-associated Mammaliicoccus sciuri ST71 co-harboring mecA and mecC genes in Brazil. Veterinary Microbiology, 283, 109792. https://doi.org/10.1016/j.vetmic.2023.109792

Echioda-Ogbole, M., Yaza, J. A., Ameh, J. A., Mailafia, S., Olabode, O. H., Adah, B. J., & Maduike, S. (2018). Coagulase-positive staphylococci isolated from cattle in Maiduguri, Nigeria. International Journal of Current Microbiology and Applied Sciences, 7(5), 1301–1306. https://doi.org/10.20546/ijcmas.2018.705.158

Echioda-Ogbole, M., Ameh, J. A., Mailafia, S., Olabode, O. H., Udo, E., Adah, B. M. J., & Godwin, E. (2025). Molecular characteristics and spa-types of Staphylococcus aureus from food-animals in the Federal Capital Territory, Abuja-Nigeria. Journal of Advances in Microbiology, 25(2), 62–73. https://doi.org/10.9734/jamb/2025/v25i2902

Egyir, B., Dsani, E., Owusu-Nyantakyi, C., Amuasi, G. R., Owusu, F. A., Allegye-Cudjoe, E., & Addo, K. K. (2022). Antimicrobial resistance and genomic analysis of staphylococci isolated from livestock and farm attendants in Northern Ghana. BMC Microbiology, 22(1), 180. https://doi.org/10.1186/s12866-022-02589-9

Frey, Y., Rodriguez, J. P., Thomann, A., Schwendener, S., & Perreten, V. (2013). Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. Journal of Dairy Science, 96(4), 2247–2257. https://doi.org/10.3168/jds.2012-6091

Jesumirhewe, C., Odufuye, T. O., Ariri, J. U., Adebiyi, A. A., Sanusi, A. T., Stöger, A., & Ruppitsch, W. (2024). Genetic characterization of antibiotic-resistant Staphylococcus spp. and Mammaliicoccus sciuri from healthy humans and poultry in Nigeria. Antibiotics, 13(8), 733. https://doi.org/10.3390/antibiotics13080733

Lawal, O. U., Barata, M., Fraqueza, M. J., Worning, P., Bartels, M. D., Goncalves, L., & Miragaia, M. (2021). Staphylococcus saprophyticus from clinical and environmental origins have distinct biofilm composition. Frontiers in Microbiology, 12, 663768. https://doi.org/10.3389/fmicb.2021.663768

Li, D., Wang, Y., Schwarz, S., Cai, J., Fan, R., Li, J., & Shen, J. (2016). Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 71(6), 1474–1478. https://doi.org/10.1093/jac/dkw040

Madhaiyan, M., Wirth, J. S., & Saravanan, V. S. (2020). Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5926–5936. https://doi.org/10.1099/ijsem.0.004498

May, L., Klein, E. Y., Rothman, R. E., & Laxminarayan, R. (2014). Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrobial Agents and Chemotherapy, 58(3), 1404–1409. https://doi.org/10.1128/AAC.01908-13

Mamza, S. A., Geidam, Y. A., Mshelia, G. D., & Egwu, G. O. (2020). Identification and enumeration of Staphylococcus species isolated from livestock in North-eastern Nigeria. Global Advanced Research Journal of Microbiology, 9(3), 56–64.

Nemeghaire, S., Vanderhaeghen, W., Argudin, M. A., Haesebrouck, F., & Butaye, P. (2014). Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. Journal of Antimicrobial Chemotherapy, 69(2), 2928–2934. https://doi.org/10.1093/jac/dku268

Panyako, P. M., Lichoti, J. K., & Ommeh, S. C. (2022). Antimicrobial drug resistance in poultry pathogens: Challenges and opportunities. Journal of Agriculture, Science and Technology, 21(1), 62–82. https://doi.org/10.4314/jagst.v21i1.7

Sands, K., Carvalho, M. J., Spiller, O. B., Portal, E. A., Thomson, K., Watkins, W. J., & Walsh, T. R. (2022). Characterization of staphylococci species from neonatal blood cultures in low- and middle-income countries. BMC Infectious Diseases, 22(1), 593. https://doi.org/10.1186/s12879-022-07541-w

Schnitt, A., Lienen, T., Wichmann-Schauer, H., & Tenhagen, B. A. (2021). The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. Journal of Dairy Science, 104(4), 4604–4614. https://doi.org/10.3168/jds.2020-19704

Singh, B. R., Agri, H., Yadav, A., Jayakumar, V., & Pawde, A. M. (2024). Antimicrobial susceptibility of vancomycin-resistant staphylococci of clinical origin in Bareilly, North India. Infectious Disease Research, 5(4), 15. https://doi.org/10.53388/IDR2024015

Thakur, P., Nayyar, C., Tak, V., & Saigal, K. (2017). Mannitol-fermenting and tube coagulase-negative staphylococcal isolates: Unraveling the diagnostic dilemma. Journal of Laboratory Physicians, 9(1), 65–66. https://doi.org/10.4103/0974-2727.187926

Torimiro, N., & Olusayo, T. O. (2017). Beta-lactamase induction in nosocomial Staphylococcus aureus strains cultured from the nasal cavity and wound of patients. International Journal of Biology, 10(1), 24–30. https://doi.org/10.5539/ijb.v10n1p24

Vela, J., Hildebrandt, K., Metcalfe, A., Rempel, H., Bittman, S., Topp, E., & Diarra, M. (2012). Characterization of Staphylococcus xylosus isolated from broiler chicken barn bioaerosol. Poultry Science, 91(12), 3003–3012. https://doi.org/10.3382/ps.2012-02302

Wang, X., Tao, X., Xia, X., Yang, B., Xi, M., Meng, J., & Xu, B. (2013). Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail raw chicken in China. Food Control, 29(1), 103–106. https://doi.org/10.1016/j.foodcont.2012.06.002

Wesołowska, M., & Szczuka, E. (2023). Occurrence and antimicrobial resistance among staphylococci isolated from the skin microbiota of healthy goats and sheep. Antibiotics, 12(11), 1594. https://doi.org/10.3390/antibiotics12111594

Zhou, Z., Zhang, M., Li, H., Yang, H., Li, X., Song, X., & Wang, Z. (2017). Prevalence and molecular characterization of Staphylococcus aureus isolated from goats in Chongqing, China. BMC Veterinary Research, 13(1), 1–8. https://doi.org/10.1186/s12917-017-1272-4

Published

30-06-2025

How to Cite

Echioda-Ogbole, M., Ameh, J. A., Mailafia, S., Olabode, O. H., Bridget, M. J. A., Ikwe-Agada, I. C., Odey, O. E., & Udo, E. E. (2025). Characterization of Mammaliicoccus sciuri and Mannitol-Fermenting Staphylococci from Small Ruminants and Chickens in the Federal Capital Territory, Nigeria. UMYU Journal of Microbiology Research (UJMR), 10(3), 64–69. https://doi.org/10.47430/ujmr.25103.008