Phenotypic Profiling of Biofilm Development and Efflux Pump Mechanisms in Multidrug-Resistant (MDR) Klebsiella pneumoniae
DOI:
https://doi.org/10.47430/ujmr.25103.015Keywords:
Biofilm, Efflux pump, Multidrug-resistant (MDR), Klebsiella pneumoniae, AntibioticsAbstract
Study’s Excerpt:
- All pneumoniae isolates were multidrug-resistant.
- High resistance seen to Ofloxacin (75%) and Cephalexin (56%).
- 25% of isolates formed biofilms; 12.5% showed efflux pump activity.
- Ethidium bromide and Congo red agar were used for phenotypic tests.
- Biofilms and efflux pumps contribute to antibiotic resistance.
Full Abstract:
Klebsiella pneumoniae causes diverse healthcare- and community-associated infections, frequently affecting patients with indwelling medical devices. Its ability to form biofilms and activate efflux pumps enhances antibiotic resistance. These two mechanisms work synergistically, accelerating the emergence of multidrug-resistant K. pneumoniae strains..This study investigated the antibiotic resistance patterns of Klebsiella pneumoniae isolates in relation to their potential for biofilm formation and efflux pump activity. A total of Sixteen (16) K. pneumoniae isolates were obtained from the Department of Microbiology, University of Lagos, Lagos State. Confirmation of K. pneumoniae was conducted through culture, microscopy, and biochemical assays. Antibiotic susceptibility testing was performed using six routinely prescribed antibiotics. Phenotypic assessment of efflux pump activity and biofilm formation was conducted using the ethidium bromide (EtBr) cartwheel assay and Congo red agar method, respectively. The results indicated that all isolates were multidrug-resistant, exhibiting high resistance to Ofloxacin (12, 75.00%), Cephalexin (9, 56.25%), and Ampicillin (8, 50.00%). Four 4(25%)isolates demonstrated biofilm-forming ability, while only two 2(12.5%) isolates exhibited efflux pump activity. The results highlight biofilm formation and efflux pump activity as key virulence mechanisms contributing to the pathogenicity and multidrug resistance of K. pneumoniae, highlighting the need for targeted therapeutic strategies to overcome these resistance mechanisms.
Downloads
References
Anderl, J. N., Zahller, J., Roe, F., & Stewart, P. S. (2018). Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to Ampicillin and Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(11), 2710–2716. https://doi.org/10.1128/AAC.44.11.2710-2716.2000
Ashwath, P., Deekshit, V. K., Rohit, A., Dhinakaran, I., Karunasagar, I., Karunasagar, I., Vishnu, S. R., & Shetty, S. A. (2022). Biofilm formation and associated gene expression in multidrug-resistant Klebsiella pneumoniae isolated from clinical specimens. Current Microbiology, 79, 73. https://doi.org/10.1007/s00284-022-02766-z
Barbosa, V. A. A., & Lery, L. M. S. (2019). Insights into Klebsiella pneumoniae type VI secretion system transcriptional regulation. BMC Genomics, 20, 1–12. https://doi.org/10.1186/s12864-019-5885-9
Bertoglio, F., Bloise, N., Oriano, M., Petrini, P., Sprio, S., Imbriani, M., Visai, L., & De Giglio, E. (2018). Treatment of biofilm communities: An update on new tools from the nanosized world. Applied Sciences, 8(6), 845. https://doi.org/10.3390/app8060845
Chakraborty, S., Mohsina, K., Sarker, P. K., Alam, M. Z., Abdul Karim, M. I., & Abu Sayem, S. M. (2016). Prevalence, antibiotic susceptibility profiles and ESBL production in Klebsiella pneumoniae and Klebsiella oxytoca among hospitalized patients. Periodicum Biologorum, 118(1), 53–58. https://doi.org/10.18054/pb.2016.118.1.3160
Clinical and Laboratory Standards Institute. (2024). Performance standards for antimicrobial disk susceptibility tests (14th ed.) [CLSI standard M02-Ed14].
Ghai, I., Ghai, S., & Chauhan, A. (2023). Efflux pumps in Gram-negative bacteria: New insights and future directions. Frontiers in Microbiology, 14, 1120450. https://doi.org/10.3389/fmicb.2023.1120450
Godoy, C., Rodríguez-Rojas, A., & Blázquez, J. (2022). Antibiotic efflux pumps in Gram-negative bacteria: A comprehensive review on the impact of regulatory networks and environmental stress. Antibiotics, 11(6), 744. https://doi.org/10.3390/antibiotics11060744
Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical Pharmacology, 33(3), 300. https://doi.org/10.4103/joacp.JOACP_349_15
Khosravi, A. D., Montazeri, E. A., & Hashemzadeh, M. (2020). Evaluation of biofilm formation and its association with virulence genes in clinical isolates of Klebsiella pneumoniae. Infection and Drug Resistance, 13, 2977–2987. https://doi.org/10.2147/IDR.S264130
Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology, 15, 740–755. https://doi.org/10.1038/nrmicro.2017.99
Lan, P., Jiang, Y., Zhou, J., & Yu, Y. (2021). A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. Journal of Global Antimicrobial Resistance, 25, 26–34. https://doi.org/10.1016/j.jgar.2021.02.020
Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, 4. https://doi.org/10.3389/fcimb.2018.00004
Martins, M., McCusker, M. P., Viveiros, M., Couto, I., Fanning, S., Pages, J. M., & Amaral, L. (2013). A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiology Journal, 7, 72–82. https://doi.org/10.2174/1874285801307010072
Mohsin, E. A., Al-Jubori, S. S., & Said, L. A. (2022). Prevalence of efflux pump and porin-related antimicrobial resistance in clinical Klebsiella pneumoniae in Baghdad, Iraq. Archives of Razi Institute, 77, 785–798.
Mosa, R. A., Altaliby, S. F., & Abbood, H. M. (2021). Phenotypic and molecular detection of biofilm-forming Klebsiella pneumoniae isolated from different clinical specimens. Annals of the Romanian Society for Cell Biology, 25(6), 13368–13379.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., ... & Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiology and Molecular Biology Reviews, 80(3), 629–661. https://doi.org/10.1128/MMBR.00078-15
Perla, R. (2016). Isolation and identification of multidrug resistant efflux pump protein from Klebsiella pneumoniae. Pharmaceutical Biotechnology: Current Research, 1(1).
Roy, S., Singh, A. K., Viswanathan, R., & Mukherjee, S. (2021). Understanding the role of efflux pumps in drug resistance in Klebsiella pneumoniae: An update. Microbial Pathogenesis, 156, 104911. https://doi.org/10.1016/j.micpath.2021.104911
Saha, U., Gondi, R., Patil, A., & Saroj, S. D. (2023). CRISPR in modulating antibiotic resistance of ESKAPE pathogens. Molecular Biotechnology, 65, 1–16. https://doi.org/10.1007/s12033-022-00543-8
Samia, B., Hassaine, H., Kara Terki, I., Didi, W., M'hamedi, I., Lachachi, M., Benamar, I., Morghad, T., & Gaouar, S. (2016). Study of biofilm production and antimicrobial resistance pattern of Klebsiella pneumoniae isolated from urinary catheter at the University Hospital of Tlemcen. American Journal of Microbiology and Biotechnology, 3(2), 13–17.
Shadkam, S., Goli, H. R., Mirzaei, B., Gholami, M., & Ahanjan, M. (2021). Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Annals of Clinical Microbiology and Antimicrobials, 20, 13. https://doi.org/10.1186/s12941-021-00418-x
Sharma, A., Gupta, V. K., & Pathania, R. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, 149(2), 129–145. https://doi.org/10.4103/ijmr.IJMR_2079_17
Singh, S., Wilksch, J. J., Dunstan, R. A., Mularski, A., Wang, N., Hocking, D. M., Lithgow, T., Tauschek, M., Robins-Browne, R. M., & Strugnell, R. A. (2019). LPS O antigen plays a key role in Klebsiella pneumoniae capsule retention. Microbiology Spectrum, 10, e01517-21. https://doi.org/10.1128/spectrum.01517-21
Varma, A., Warghane, A., Dhiman, N. K., Paserkar, N., Upadhye, V., Modi, A., Sawant, S., Khadse, R., & Mishra, Y. (2023). The role of nanocomposites against biofilm infections in humans. Frontiers in Cellular and Infection Microbiology, 13, 1104615. https://doi.org/10.3389/fcimb.2023.1104615
Vuotto, C., Longo, F., Balice, M. P., Donelli, G., & Varaldo, P. E. (2017). Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens, 6(4), 26. https://doi.org/10.3390/pathogens6040026
Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278. https://doi.org/10.3390/ijerph17176278
Zhang, Y., Wang, X., Wang, Q., Chen, H., Li, H., Wang, S., Xie, Y., & Wang, H. (2021). Emergence of tigecycline-nonsusceptible and IMP-4 carbapenemase-producing K2-ST65 hypervirulent Klebsiella pneumoniae in China. Microbiology Spectrum, 9(2), e01305-21. https://doi.org/10.1128/Spectrum.01305-21
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hadiza Na`'iya Misbahu, Abdulhamid Yusuf, Zahra Na`'iya Misbahu, Dikwa, K. B., Shafa'atu Abubakar, Bilkisu Isma'il, Fadila Isyaku, Adeleye Adewale Isaac

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.