Female Anopheles Mosquito Gut Microbiota: Description and Impact on Transmission of Plasmodium Parasite
DOI:
https://doi.org/10.47430/ujmr.25103.026Keywords:
Mosquito gut microbiota, Plasmodium falciparum, Vector competence, Malaria transmission, ParatransgenesisAbstract
Study’s Excerpt:
- Mosquito gut microbiota influences Plasmodium falciparum
- Dominant microbes like Serratia and Wolbachia modulate mosquito immunity.
- Microbiota disruptions increase vector susceptibility to malaria.
- Review highlights paratransgenesis and biological control potential.
- Novel microbiota-based strategies could complement malaria control efforts.
Full Abstract:
Malaria, primarily caused by Plasmodium falciparum, remains a significant public health concern, particularly in sub-Saharan Africa. While vector control interventions and antimalarial treatments have reduced transmission in some regions, their long-term efficacy is threatened by increasing resistance to insecticides and antimalarial drugs. This review examines the emerging role of mosquito gut microbiota in shaping vector competence and influencing Plasmodium development, with the goal of identifying microbiota-based approaches as complementary tools for malaria control. A comprehensive literature review was conducted using peer-reviewed publications from microbiology, vector biology, immunology, and disease ecology. Key focus areas include the structure and diversity of Anopheles gut microbiota, their immunomodulatory functions, interactions with P. falciparum, and potential applications in paratransgenesis and biological vector control. The mosquito gut microbiota, dominated by genera such as Serratia, Pseudomonas, Enterobacter, and Wolbachia, plays a pivotal role in modulating immune pathways (Toll, IMD, JAK-STAT), producing antiparasitic metabolites, and forming physical barriers to parasite invasion. Microbial disruption enhances the susceptibility of mosquitoes to Plasmodium, while specific bacteria confer resistance. Environmental and genetic factors significantly shape microbiota composition, with consequences for mosquito physiology and vectorial capacity. Symbionts like Wolbachia have shown promise in reducing parasite loads and blocking the transmission of diseases. Targeting the mosquito gut microbiota presents a novel and sustainable strategy for reducing P. falciparum transmission. Microbiota-based interventions may enhance existing malaria control programs and help counteract the growing challenge of resistance.
Downloads
References
Barnard, K., Jeanrenaud, A. C., Brooke, B. D., & Oliver, S. V. (2019). The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Scientific Reports, 9(1), 9117. https://doi.org/10.1038/s41598-019-45499-z
Bassene, H., Fenollar, F., Dipankar, B., Doucouré, S., Ali, E., Michelle, C., & Mediannikov, O. (2018). 16S metagenomic comparison of Plasmodium falciparum-infected and noninfected Anopheles gambiae and Anopheles funestus microbiota from Senegal. The American Journal of Tropical Medicine and Hygiene, 99(6), 1489. https://doi.org/10.4269/ajtmh.18-0263
Boissière, A., Tchioffo, M. T., Bachar, D., Abate, L., Marie, A., Nsango, S. E., & Morlais, I. (2012). Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathogens, 8(5), e1002742. https://doi.org/10.1371/journal.ppat.1002742
Cansado-Utrilla, C., Zhao, S. Y., McCall, P. J., Coon, K. L., & Hughes, G. L. (2021). The microbiome and mosquito vectorial capacity: Rich potential for discovery and translation. Microbiome, 9(111). https://doi.org/10.1186/s40168-021-01073-2
Caragata, E. P., & Short, S. M. (2022). Vector microbiota and immunity: Modulating arthropod susceptibility to vertebrate pathogens. Current Opinion in Insect Science, 50, 100875. https://doi.org/10.1016/j.cois.2022.100875
Centers for Disease Control and Prevention. (2010). Anopheles mosquitoes. Malaria. (04 September 2014).
Chehab, R. F., Cross, T. W. L., & Forman, M. R. (2021). The gut microbiota: A promising target in the relation between complementary feeding and child undernutrition. Advances in Nutrition, 12(3), 969–979. https://doi.org/10.1093/advances/nmaa146
Cirimotich, C. M., Ramirez, J. L., & Dimopoulos, G. (2011). Native microbiota shape insect vector competence for human pathogens. Cell Host & Microbe, 10(4), 307–310. https://doi.org/10.1016/j.chom.2011.09.006
Coon, K. L., Brown, M. R., & Strand, M. R. (2016). Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Molecular Ecology, 25(22), 5806–5826. https://doi.org/10.1111/mec.13877
Dada, N., Jupatanakul, N., Minard, G., Short, S. M., Akorli, J., & Villegas, L. M. (2021). Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. Microbiome, 9, 1–16. https://doi.org/10.1186/s40168-020-00987-7
Dada, N., Sheth, M., Liebman, K., Pinto, J., & Lenhart, A. (2018). Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Scientific Reports, 8(1), 2084. https://doi.org/10.1038/s41598-018-20367-4
Djihinto, O. Y., Medjigbodo, A. A., Gangbadja, A. R., Saizonou, H. M., Lagnika, H. O., Nanmede, D., ... & Djogbénou, L. S. (2022). Malaria-transmitting vectors microbiota: Overview and interactions with Anopheles mosquito biology. Frontiers in Microbiology, 13, 891573. https://doi.org/10.3389/fmicb.2022.891573
Dong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathogens, 5(5), e1000423. https://doi.org/10.1371/journal.ppat.1000423
Ezemuoka, L. C., Akorli, E. A., Aboagye-Antwi, F., & Akorli, J. (2020). Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae sl. PLoS ONE, 15(9), e0238931. https://doi.org/10.1371/journal.pone.0238931
Fazal, S., Malik, R. M., Baig, A. Z., Khatoon, N., Aslam, H., Zafar, A., & Ishtiaq, M. (2023). Role of mosquito microbiome in insecticide resistance. In Mosquito Research—Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies. IntechOpen. https://doi.org/10.5772/intechopen.104265
Gabrieli, P., Caccia, S., Varotto-Boccazzi, I., Arnoldi, I., Barbieri, G., Comandatore, F., & Epis, S. (2021). Mosquito trilogy: Microbiota, immunity and pathogens, and their implications for the control of disease transmission. Frontiers in Microbiology, 12, 630438. https://doi.org/10.3389/fmicb.2021.630438
Garrido-Cardenas, J. A., González-Cerón, L., García-Maroto, F., Cebrián-Carmona, J., Manzano-Agugliaro, F., & Mesa-Valle, C. M. (2023). Analysis of fifty years of severe malaria worldwide research. Pathogens, 12(3), 373. https://doi.org/10.3390/pathogens12030373
Garrigós, M., Garrido, M., Panisse, G., Veiga, J., & Martínez-de la Puente, J. (2023). Interactions between West Nile virus and the microbiota of Culex pipiens vectors: A literature review. Pathogens, 12(11), 1287. https://doi.org/10.3390/pathogens12111287
Gendrin, M., & Christophides, G. K. (2013). The Anopheles mosquito microbiota and their impact on pathogen transmission. In Anopheles Mosquitoes—New Insights into Malaria Vectors. IntechOpen. https://doi.org/10.5772/55107
Gill, R., Hora, R., Alam, M. M., Bansal, A., Bhatt, T. K., & Sharma, A. (2023). Frontiers in malaria research. Frontiers in Microbiology, 14, 1191773. https://doi.org/10.3389/fmicb.2023.1191773
Grogan, C., Bennett, M., Moore, S., & Lampe, D. (2021). Novel Asaia bogorensis signal sequences for Plasmodium inhibition in Anopheles stephensi. Frontiers in Microbiology, 12, 633667. https://doi.org/10.3389/fmicb.2021.633667
Hassan, R., Allali, I., Agamah, F. E., Elsheikh, S. S., Thomford, N. E., Dandara, C., & Chimusa, E. R. (2021). Drug response in association with pharmacogenomics and pharmacomicrobiomics: Towards a better personalized medicine. Briefings in Bioinformatics, 22(4). https://doi.org/10.1093/bib/bbaa292
Hughes, G. L., Dodson, B. L., Johnson, R. M., Murdock, C. C., Tsujimoto, H., Suzuki, Y., ... & Sakamoto, J. M. (2014). Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proceedings of the National Academy of Sciences, 111(34), 12498–12503. https://doi.org/10.1073/pnas.1408888111
Jayakrishnan, L., Sudhikumar, A. V., & Aneesh, E. M. (2018). Role of gut inhabitants on vectorial capacity of mosquitoes. Journal of Vector Borne Diseases, 55(2), 69–78. https://doi.org/10.4103/0972-9062.242567
Kalappa, D. M., Subramani, P. A., Basavanna, S. K., Ghosh, S. K., Sundaramurthy, V., Uragayala, S., ... & Valecha, N. (2018). Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections. Malaria Journal, 17, 1–8. https://doi.org/10.1186/s12936-018-2535-7
Kirsten, B., Alexander, C. S., Jeanrenaud, N., Basil, D. B., & Shüné, V. O. (2019). The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Scientific Reports, 9, 9117. https://doi.org/10.1038/s41598-019-45499-z
Korownyk, C., Liu, F., & Garrison, S. (2018). Population level evidence for seasonality of the human microbiome. Chronobiology International, 35(4), 573–577. https://doi.org/10.1080/07420528.2018.1424718
Kozlova, E. V., Hegde, S., Roundy, C. M., Golovko, G., Saldaña, M. A., Hart, C. E., & Hughes, G. L. (2021). Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. The ISME Journal, 15(1), 93–108. https://doi.org/10.1038/s41396-020-00763-3
Liu, H., Yin, J., Huang, X., Zang, C., Zhang, Y., Cao, J., & Gong, M. (2024). Mosquito gut microbiota: A review. Pathogens, 13(8), 691. https://doi.org/10.3390/pathogens13080691
Loughlin, S. O. (2020). The expanding Anopheles gambiae species complex. Pathogens and Global Health, 114(1), 1–1. https://doi.org/10.1080/20477724.2020.1722434
Malik, M. R., Fazal, S., Baig, Z. A., Khatoon, N., Aslam, H., Zafar, A., & Ishtiaq, M. (2022). Role of mosquito microbiome in insecticide resistance. Microbiology, 10, 2036. https://doi.org/10.5772/intechopen.104265
Mandal, R. K., Mandal, A., Denny, J. E., Namazii, R., John, C. C., & Schmidt, N. W. (2023). Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria. Nature Communications, 14(1), 6465. https://doi.org/10.1038/s41467-023-42235-0
Mekuriaw, W., Yewhalaw, D., Woyessa, A., Bashaye, S., & Massebo, F. (2019). Distribution and trends of insecticide resistance in malaria vectors in Ethiopia (1986-2017): A review. Ethiopian Journal of Public Health and Nutrition (EJPHN), 3, 51–61.
Mezieobi, K. C., Alum, E. U., Ugwu, O. P. C., Uti, D. E., Alum, B. N., Egba, S. I., & Michael, E. C. (2025). Economic burden of malaria on developing countries: A mini review. Parasite Epidemiology and Control, e00435. https://doi.org/10.1016/j.parepi.2025.e00435
Minard, G., Mavingui, P., & Moro, C. V. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites & Vectors, 6(1), 146. https://doi.org/10.1186/1756-3305-6-146
Mizushima, D., Yamamoto, D. S., Tabbabi, A., Arai, M., & Kato, H. (2023). A rare sugar, allose, inhibits the development of Plasmodium parasites in the Anopheles mosquito independently of midgut microbiota. Frontiers in Cellular and Infection Microbiology, 13, 1162918. https://doi.org/10.3389/fcimb.2023.1162918
Muturi, E. J., Ramirez, J. L., Rooney, A. P., & Kim, C. H. (2017). Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Neglected Tropical Diseases, 11(2), e0005377. https://doi.org/10.1371/journal.pntd.0005377
Omoke, D., Kipsum, M., Otieno, S., Esalimba, E., Sheth, M., Lenhart, A., ... & Dada, N. (2021). Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malaria Journal, 20, 1–14. https://doi.org/10.1186/s12936-021-03606-4
Omondi, Z. N., & Caner, A. (2022). An overview on the impact of microbiota on malaria transmission and severity: Plasmodium-vector-host axis. Acta Parasitologica, 67(4), 1471–1486. https://doi.org/10.1007/s11686-022-00631-4
Opute, A. O., Akinkunmi, J. A., Funsho, A. O., Obaniyi, A. K., & Anifowoshe, A. T. (2022). Genetic diversity of Plasmodium falciparum isolates in Nigeria: A review. Egyptian Journal of Medical Human Genetics, 23(1), 129. https://doi.org/10.1186/s43042-022-00340-7
Pidiyar, V. J., Jangid, K., Patole, M. S., & Shouche, Y. S. (2004). Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. The American Journal of Tropical Medicine and Hygiene, 70(6), 597–603. https://doi.org/10.4269/ajtmh.2004.70.597
Pumpuni, C. B., Mendis, C., & Beier, J. C. (1997). Plasmodium yoelii sporozoite infectivity varies as a function of sporozoite loads in Anopheles stephensi mosquitoes. The Journal of Parasitology, 83(4), 652–655. https://doi.org/10.2307/3284242
Romoli, O., & Gendrin, M. (2018). The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasites & Vectors, 11, 1–8. https://doi.org/10.1186/s13071-018-2784-x
Sathishkumar, V., Devianjana, R., Kathirvel, S., Kaviyarasi, R., & Kamaraj, S. (2023). The microbiota, the malarial parasite, and the mosquito [MMM]—A three-sided relationship. Molecular and Biochemical Parasitology, 253, 111543. https://doi.org/10.1016/j.molbiopara.2023.111543
Scolari, F., Casiraghi, M., & Bonizzoni, M. (2019). Aedes spp. and their microbiota: A review. Frontiers in Microbiology, 10, 2036. https://doi.org/10.3389/fmicb.2019.02036
Scolari, F., Casirasghi, M., & Bonizzoni, M. (2019). Aedes spp. and their microbiota: A review. Frontiers in Microbiology, 10, 2036. https://doi.org/10.3389/fmicb.2019.02036
Sharma, P., Rani, J., Chauhan, C., Kumari, S., Tevatiya, S., Das De, T., ... & Dixit, R. (2020). Altered gut microbiota and immunity defines Plasmodium vivax survival in Anopheles stephensi. Frontiers in Immunology, 11, 609. https://doi.org/10.3389/fimmu.2020.00609
Shi, H., Yu, X., & Cheng, G. (2023). Impact of the microbiome on mosquito-borne diseases. Protein & Cell, 14(10), 743–761. https://doi.org/10.1093/procel/pwad021
Singh, A., Allam, M., Kwenda, S., Khumalo, Z. T. H., Ismail, A., & Oliver, S. V. (2022). The dynamic gut microbiota of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). Scientific Reports, 12(1), 1495. https://doi.org/10.1038/s41598-022-05437-y
Singh, A., Patel, N. F., Allam, M., Chan, W. Y., Mohale, T., Ismail, A., & Oliver, S. V. (2022). Marked effects of larval salt exposure on the life history and gut microbiota of the malaria vector Anopheles merus (Diptera: Culicidae). Insects, 13(12), 1165. https://doi.org/10.3390/insects13121165
Sinka, M. E., Pironon, S., Massey, N. C., Longbottom, J., Hemingway, J., Moyes, C. L., & Willis, K. J. (2020). A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedings of the National Academy of Sciences, 117(40), 24900–24908. https://doi.org/10.1073/pnas.2003976117
Sriboonvorakul, N., Chotivanich, K., Silachamroon, U., Phumratanaprapin, W., Adams, J. H., Dondorp, A. M., & Leopold, S. J. (2023). Intestinal injury and the gut microbiota in patients with Plasmodium falciparum malaria. PLoS Pathogens, 19(10), e1011661. https://doi.org/10.1371/journal.ppat.1011661
Suh, P. F., Elanga-Ndille, E., Tchouakui, M., Sandeu, M. M., Tagne, D., Wondji, C., & Ndo, C. (2023). Impact of insecticide resistance on malaria vector competence: A literature review. Malaria Journal, 22(19). https://doi.org/10.1186/s12936-023-04444-2
Terradas, G., Allen, S. L., Chenoweth, S. F., & McGraw, E. A. (2017). Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasites & Vectors, 10(1), 622. https://doi.org/10.1186/s13071-017-2589-3
Venkatesan, P. (2025). WHO world malaria report 2024. The Lancet Microbe. https://doi.org/10.1016/j.lanmic.2025.101073
Vinayagam, S., Rajendran, D., Sekar, K., Renu, K., & Sattu, K. (2023). The microbiota, the malarial parasite, and the mosquito [MMM]—A three-sided relationship. Molecular and Biochemical Parasitology, 253, 111543. https://doi.org/10.1016/j.molbiopara.2023.111543
Vinayagam, S., Rajendran, D., Sekar, K., Renu, K., & Sattu, K. (2023). The microbiota, the malarial parasite, and the mosquito [MMM]—A three-sided relationship. Molecular and Biochemical Parasitology, 253, 111543. https://doi.org/10.1016/j.molbiopara.2023.111543
Waide, M. L., & Schmidt, N. W. (2020). The gut microbiome, immunity, and Plasmodium severity. Current Opinion in Microbiology, 58, 56–61. https://doi.org/10.1016/j.mib.2020.08.006
Wang, H. Z., He, Y. X., Yang, C. J., Zhou, W., & Zou, C. G. (2011). Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection. The Journal of Immunology, 187(12), 6410–6416. https://doi.org/10.4049/jimmunol.1101436
Wang, S., Dos-Santos, A. L., Huang, W., Liu, K. C., Oshaghi, M. A., Wei, G., Agre, P., & Jacobs-Lorena, M. (2017). Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, 357(6358), 1399–1402. https://doi.org/10.1126/science.aan5478
World Health Organization. (2019). WHO updates fact sheet on malaria. https://communitymedicine4asses.com/2019/03/31/who-updates-fact-sheet-on-malaria/
World Health Organization. (2020). The potential impact of health service disruptions on the burden of malaria: A modelling analysis for countries in sub-Saharan Africa.
Wu, L., Mwesigwa, J., Affara, M., Bah, M., Correa, S., Hall, T., ... & D'Alessandro, U. (2020). Sero-epidemiological evaluation of malaria transmission in The Gambia before and after mass drug administration. BMC Medicine, 18(1), 331. https://doi.org/10.1186/s12916-020-01785-6
Xi, Z., Ramirez, J. L., & Dimopoulos, G. (2008). The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathogens, 4(7), e1000098. https://doi.org/10.1371/journal.ppat.1000098
Yawson, A. E., McCall, P. J., Wilson, M. D., & Donnelly, M. J. (2004). Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Medical and Veterinary Entomology, 18(4), 372–377. https://doi.org/10.1111/j.0269-283X.2004.00519.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salisu, H. L., Yayo, A. M., Sharif, A. A., Dambatta, A. S.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.