Assessment of Microbial and Nutritional compositions of Fermented Plantain flour across the three Senatorial districts in Ogun State, Nigeria

Authors

  • Osiyemi, E. O. Department of Science Laboratory Technology, School of Science, Abraham Adesanya Polytechnic, P.M.B 1020, Ijebu-Igbo, Ogun State, Nigeria
  • Okoh, O. A. Department of Science Laboratory Technology, School of Science, Abraham Adesanya Polytechnic, P.M.B 1020, Ijebu-Igbo, Ogun State, Nigeria
  • Akindele, S. T. Department of Science Laboratory Technology, School of Science, Abraham Adesanya Polytechnic, P.M.B 1020, Ijebu-Igbo, Ogun State, Nigeria
  • Raufu, T. T. Department of Science Laboratory Technology, School of Science, Abraham Adesanya Polytechnic, P.M.B 1020, Ijebu-Igbo, Ogun State, Nigeria
  • Obafebi, T. O. Department of Science Laboratory Technology, School of Science, Abraham Adesanya Polytechnic, P.M.B 1020, Ijebu-Igbo, Ogun State, Nigeria

DOI:

https://doi.org/10.47430/ujmr.25103.020

Keywords:

Dietary, Flour, Molecular analysis, Nutritional analysis, Susceptibility profile

Abstract

Study’s Excerpt:

  • Flour samples from Ogun State showed variable microbial loads and nutrition.
  • Highest bacterial count was 3.5 × 10⁴ CFU/ml; lowest was 1.8 × 10⁴ CFU/ml.
  • Molecular ID revealed Bacillus, Providencia, and Lysinibacillus species.
  • Most isolates were antibiotic-resistant; some were Ofloxacin-sensitive.
  • Flour had high carbs (79–81%) and good shelf stability (moisture ~10.65%).

Full Abstract:

Flour is a carbohydrate-rich fiber source that is exposed to microbial contamination and nutritional alterations during preparation.  This study investigates samples collected from six markets across Ogun State, Nigeria, covering the three senatorial districts (Ogun Central, East, and West).  Serial dilution was employed for the total bacteria count, while identification was carried out using 16S rRNA sequencing.  Nutritional assessments of the flour samples were also evaluated using techniques to determine the crude protein, fat, fiber, ash content, and moisture content of the flour samples.  The highest TBC was recorded in samples from Waterside (3.5 × 10⁴ CFU/ml), while the lowest was found in Ilaro samples (1.8 × 10⁴ CFU/ml) with a mean total bacterial count of 2.73 × 10⁴ CFU/ml.  Molecular identification revealed Bacillus licheniformis, Providencia rettgeri, Pusillimonas spp., Bacillus thuringiensis, Bacillus tropicus, Bacillus pseudomycoides, and Lysinibacillus spp.  Most of the isolates showed resistance to the antibiotics employed in the study, while Bacillus thuringiensis and Lysinibacillus spp. were susceptible to Ofloxacin.  Nutritional analysis of the flour samples revealed high carbohydrate content (79.14-81.30%), protein (2.0-2.3%), and crude fiber (4.45-6.34%) content.  Fat content was low across all samples (0.60-1.2%), whereas moisture content values ranged from 9.98 to 11.32% with a mean moisture content of approximately 10.65%, indicating good shelf stability. All results were analyzed using descriptive statistics (percentage values), and graphical representations were created using SPSS and Microsoft Excel to visualize differences in microbial and nutritional data.  These findings highlight regional differences in microbial and nutritional profiles of the flour, underscoring the need for improved processing practices to enhance safety and quality.  This study highlights the nutritional value of plantain flour and recommends quality control measures to ensure consumer health and product integrity. 

Downloads

Download data is not yet available.

References

Adediran, T. K., Akinmoladun, O. O., & Akinmoladun, A. O. (2021). Antibiotic resistance in Providencia spp. from plantain products. West African Food Journal, 39(1), 1–10. https://doi.org/10.4103/wajr.wajr_25_18

Adediran, T. K., Akinyemi, A. A., & Ojo, M. O. (2021). Antibiotic resistance in Providencia spp. from plantain products. West African Food Journal, 10(2), 55–62.

Adegunwa, M. O., Alamu, E. O., Bakare, H. A., & Godwin, A. T. (2019). Quality evaluation and consumer acceptability of fermented unripe plantain flour. African Journal of Food Science, 13(3), 45–51.

Adeogun, O., Tiamiyu, O. A., Alabi, A. A., & Akindele, I. O. (2021). Assessment of the proximate composition, sensory acceptability, and microbial loads of unripe plantain flour fortified with dry herring fish. World Journal of Advanced Research and Reviews, 10(3), 104–112. https://doi.org/10.30574/wjarr.2021.10.3.0257

Adepoju, O. T., & Osunde, Z. D. (2017). Nutrient composition and sensory properties of fermented and unfermented plantain flour. Nigerian Journal of Nutritional Sciences, 38(2), 132–138.

Adeyemi, T. O., Ojo, O. A., & Adebayo, O. A. (2021). Pathogenic bacteria in fermented foods: A review. International Journal of Food Safety, 9(2), 85–92.

Agboola, A., Adebowale, A. A., & Akinmoladun, O. O. (2019). Nutrient analysis of cassava flours from Nigeria. Journal of Food Chemistry and Technology, 5(2), 85–90.

Akinmoladun, O. O., Olaleye, M. T., & Akinmoladun, A. O. (2020). Nutritional and functional properties of plantain flour. Food Science and Technology International, 26(5), 391–398.

Amoako, D. B., Mensah, D., Osei, M., & Boateng, J. (2022). Microbial identification in plantain flour using metagenomic sequencing. Journal of Food Science and Technology, 59(6), 2301–2310.

Apeh, D. O., Mark, O., Onoja, V. O., Awotunde, M., Ojo, T., Christopher, P., & Makun, H. A. (2021). Hydrogen cyanide and mycotoxins: Their incidence and dietary exposure from cassava products in Anyigba, Nigeria. Food Control, 121, 107663. https://doi.org/10.1016/j.foodcont.2020.107663

Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., da Silva, R. C., & Ibrahim, S. A. (2020). Lactic acid bacteria: Food safety and human health applications. Dairy, 1(3), 202–232. https://doi.org/10.3390/dairy1030015

Babatunde, R., Akinmoladun, O. O., & Akinmoladun, A. O. (2020). Nutritional properties of plantain flour: A high-protein, fiber-rich alternative. Food Science and Nutrition, 8(5), 2272–2280.

Clara, L. (2023). Impact of microbial interactions on the spoilage of packaged foods. Journal of Food Microbiology, 7(6), 173. https://doi.org/10.35841/aafmy-7.6.173

Eze, C. E., Nwankwo, J. N., & Okafor, U. C. (2022). Molecular characterization of plantain flour bacteria. Journal of Food Science and Technology, 59(9), 3456–3464.

FAO. (2019). Post-harvest management of plantains in Africa. Food and Agriculture Organization of the United Nations.

FAO. (2020). Global perspectives on gluten-free markets and agricultural development. Food and Agriculture Organization of the United Nations.

Food Safety & Standards Authority of India. (2022). Manual of methods of analysis of foods—Cereal and cereal products (Revision 0.0). Section: AOAC Official Method 2003.06—Crude Fat in Feeds, Cereal Grains, and Forages (Randall/Soxtec/Extraction Submersion Method).

Fung, D. Y. C., Norwood, D. E., & Tsai, H. C. (2018). Microbial testing in food safety. In J. Hoorfar (Ed.), Foodborne pathogens: Microbiology and molecular biology (pp. 233–248). Humana Press. https://doi.org/10.1201/9780429506128

Ibrahim, A. S., Musa, M. A., & Bello, M. (2020). Antibiotic susceptibility in fermented foodborne bacteria. Nigerian Journal of Applied Microbiology, 18(3), 210–218.

Ibrahim, S. A. (2020). Lactic acid bacteria: Food safety and human health applications. Dairy, 1(3), 202–232. https://doi.org/10.3390/dairy1030015

Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods, 10(12), 3131. https://doi.org/10.3390/foods10123131

Ilelaboye, N. O., & Jesusina, T. A. (2021). Physicochemical evaluation and pasting properties of cassava flour. In Root, tuber and banana food system innovations: Value creation for inclusive outcomes (pp. 241–258). Springer.

Lai, C. Y., Tsai, Y. H., & Hsieh, P. C. (2018). Probiotic properties of Bacillus licheniformis. Food Microbiology, 76, 1–7.

Marco, M. L., Heeney, D. T., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010

Molapo, K. J., Mokoena, M. P., & Sibanda, T. (2020). Hygienic practices and microbial quality of plantain flour in South Africa. South African Food Journal, 12(4), 210–218.

Montemurro, M., & Lamagra, M. S. (2022). Nitrogen/protein and one-step moisture and ash examination in foodstuffs using thermogravimetric analysis. Foods, 11(2), 345. https://doi.org/10.3390/foods11020345

Mwangi, S. W., Kamau, J. N., & Otieno, M. O. (2021). Identification of plantain flour bacteria using PCR techniques. East African Journal of Food Safety, 5(1), 12–20.

National Research Council. (2025). Nutrition analysis: Determining the nutritional content of foods and food products. In Nutrition analysis (pp. 1–10). Retrieved from Wikipedia.

Nguefack, J. P., Fotio, D., & Tchana, A. (2019). Culture-dependent analysis of cassava flour bacteria. African Journal of Microbial Research, 13(3), 56–64.

Norgrove, L., & Hauser, S. (2014). Improving plantain (Musa spp. AAB) yields on smallholder farms in West and Central Africa. Food Security, 6(4), 501–514. https://doi.org/10.1007/s12571-014-0365-1

Ogunbanjo, A. O., Adebayo, T. A., & Oladipo, B. A. (2019). Culture-based study of plantain flour bacteria in Ogun State. West African Journal of Food Microbiology, 7(2), 78–85.

Ogundare, B. O., Akinmoladun, O. O., & Akinmoladun, A. O. (2020). Nutritional evaluation of cassava flour. Nigerian Journal of Food Science, 38(1), 15–20.

Okonkwo, N. C., Eze, V. C., & Nwankwo, J. N. (2019). Lactobacillus and Enterobacter prevalence in cassava flour. Nigerian Journal of Microbiology, 33(1), 45–52.

Oku, I. E., & Oyadougha, D. N. (2024). Comparative assessment of microbial load and proximate composition of packaged and unpackaged plantain flours in Port Harcourt, Nigeria. Journal of Food Safety and Hygiene, 10(2), 45–52.

Oku, I., & Oyadougha, W. T. (2024). Nutritional and microbial quality of locally processed plantain flour. International Journal of Innovative Science and Research Technology, 9(2), 45–52. Retrieved from https://www.ijisrt.com

Oladimeji, R. O., Akinyemi, A. A., & Ojo, M. O. (2021). Microbial diversity in cassava flour using molecular methods. African Journal of Microbiology Research, 15(4), 112–120.

Olaleye, M. T., Adebayo, O. A., & Ojo, M. O. (2021). Nutritional properties of plantain flour for food application. African Journal of Food Science, 15(5), 123–130.

Olaleye, M. T., Olorunfemi, O. A., & Olajide, O. T. (2021). Nutritional properties of plantain flour for food application. African Journal of Food Science, 15(3), 45–52.

Olaoye, O. A., & Oyewole, O. B. (2012). Production and utilization of fermented plantain flour in Nigeria: A review. International Journal of Food Science and Technology, 47(2), 255–262. https://doi.org/10.1111/j.1365-2621.2011.02829.x

Olowe, A. A., Olorunfemi, O. A., & Olajide, O. T. (2018). Nutrient composition of plantain flour from different processing methods. Journal of Food Processing and Preservation, 42(9), 1–7.

Oluwalana, I., Adebowale, A. A., & Akinmoladun, O. O. (2021). Nutritional composition of cassava and plantain flour from southwestern Nigeria. Journal of Agricultural and Food Chemistry, 69(13), 3802–3810.

Ray, R. C., & Sivakumar, P. S. (2009). Traditional and novel fermented foods and beverages from tropical root and tuber crops: Review. International Journal of Food Science & Technology, 44(6), 1073–1087. https://doi.org/10.1111/j.1365-2621.2009.01943.x

Santos, C. A., Silva, R. A., & Lima, M. F. (2020). Antimicrobial activities of Bacillus thuringiensis. Journal of Applied Microbiology, 129(3), 654–662.

Sindhu, R., Binod, P., Pandey, A., & Soccol, C. R. (2021). Industrial applications of microbial enzymes: Recent advances and future prospects. Biotechnology Advances, 49, 107748.

Suleiman, T. M., Musa, A. A., & Bello, M. (2022). Role of Lysinibacillus spp. in food fermentation. Nigerian Journal of Microbial Research, 15(1), 33–40.

Swennen, R., Tenkouano, A., Vuylsteke, D., Ortiz, R., & Crouch, J. H. (2013). Banana and plantain. In C. Kole (Ed.), Genomics of tropical crop plants (pp. 219–243). Springer. https://doi.org/10.1007/978-0-387-71219-1_10

Unigwe, C. R., Mhomga, L. I., Igwe, I. R., & Egwu, L. U. (2023). Cassava peels as feed resource for animal production—A review. World Scientific News, 183, 104–120.

Published

30-06-2025

How to Cite

Osiyemi, E. O., Okoh, O. A., Akindele, S. T., Raufu, T. T., & Obafebi, T. O. (2025). Assessment of Microbial and Nutritional compositions of Fermented Plantain flour across the three Senatorial districts in Ogun State, Nigeria. UMYU Journal of Microbiology Research (UJMR), 10(3), 185–197. https://doi.org/10.47430/ujmr.25103.020