Assessment of Antibacterial Potentials of Lawsonia inermis L. (Henna) Leaf Aqueous Extracts
DOI:
https://doi.org/10.47430/ujmr.25103.039Keywords:
Aqueous extract, Bacteria, Biosafety, HennaAbstract
Study’s Excerpt:
- Henna extract (50 mg/mL) showed highest antibacterial activity on all tested isolates.
- Antibacterial activity increased significantly with extract concentration (P ≤ 05).
- MIC ranged from 2.5–10 mg/mL; MBC ranged from 20–40 mg/mL.
- Seven phytochemicals detected, including flavonoids and tannins.
- Henna shows promise as an alternative antibacterial agent.
Full Abstract:
Antibiotic resistance has become a euphemism in the public health sector globally. The urge for alternative therapies led researchers to endorse the use of medicinal plants due to their cost-effectiveness and absence of side effects. This research was conducted to evaluate the antibacterial potential of henna leaf aqueous extract against clinical bacterial isolates. Different leaf aqueous concentrations of Henna (50, 25, 12.5, and 6.25 mg/ml) were tested against Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. The disc diffusion method was used to determine the antibacterial susceptibility of the isolates against the extracts. The phytochemical constituents of the extract were determined using standard procedures. The result revealed a significant difference (P≤0.05) in the effect of various concentrations of henna extracts on bacterial activities. The result showed that 50 mg/ml concentrations of henna leaf aqueous extract showed the highest activity on all the isolates. The activity of the 50 mg/ml extract is above 50% of that of the positive control. The MIC of the extract against the tested microorganisms ranged from 2.5-10.0 mg/ml, while the MBC obtained in the present study ranged between 20.0-40.0 mg/ml. The effect of the extract is concentration-dependent; it increases with an increase in concentration. The activity of the henna leaf aqueous extracts could be attributed to the presence of 7 active phytochemicals: Saponins, Steroids, Triterpenes, Flavonoids, Alkaloids, Glycosides, and Tannins. Thus 50mg/ml of henna aqueous extract is recommended against bacterial isolates.
Downloads
References
Adegoke, A. A., Iberi, P. A., Akinpelu, D. A., Aiyegoro, O. A., & Mboto, C. I. (2010). Studies on phytochemical screening and antimicrobial potentials of Phyllanthus amarus against multiple antibiotic resistant bacteria. International Journal of Applied Research in Natural Products, 3(3), 6–12.
Al-Snafi, A. E. (2019). A review on Lawsonia inermis: A potential medicinal plant. International Journal of Current Pharmaceutical Research, 11(5), 1–13. https://doi.org/10.22159/ijcpr.2019v11i5.35695
Álvarez-Martínez, F. J., Barrajón-Catalán, E., Encinar, J. A., Rodríguez-Díaz, J. C., & Micol, V. (2020). Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Current Medicinal Chemistry, 27, 2576–2606. https://doi.org/10.2174/0929867325666181008115650
AOAC. (2019). Official methods of analysis (18th ed.). Association of Official Analytical Chemists.
Bafghi, M. F., Salary, S., Mirzaei, F., Mahmoodian, H., Meftahizade, H., & Zareshahi, R. (2022). Antibacterial and anti-trichomonas characteristics of local landraces of Lawsonia inermis L. BMC Complementary Medicine and Therapies, 22, 203. https://doi.org/10.1186/s12906-022-03676-0
Batiha, G. E., Teibo, J. O., Shaheen, H. M., Babalola, B. A., Teibo, T. K. A., Al-Kuraishy, H. M., Al-Garbeeb, A. I., Alexiou, A., & Papadakis, M. (2024). Therapeutic potential of Lawsonia inermis Linn: A comprehensive overview. *Naunyn-Schmiedeberg's Archives of Pharmacology, 397*, 3525–3540. https://doi.org/10.1007/s00210-023-02735-8
El Massoudi, S., Zinedine, A., Rocha, J. M., Benidir, M., Najjari, I., El Ghadraoui, L., Benjelloun, M., & Errachidi, F. (2023). Phenolic composition and wound healing potential assessment of Moroccan henna (Lawsonia inermis) aqueous extracts. Cosmetics, 10, 92. https://doi.org/10.3390/cosmetics10030092
Elaguel, A., Kallel, I., Gargouri, B., Amor, I. B., Hadrich, B., Mesaaoud, E. B., et al. (2019). Lawsonia inermis essential oil: Extraction optimisation by RSM, antioxidant activity, lipid peroxidation, and antiproliferative effects. Lipids in Health and Disease, 18(1), 196. https://doi.org/10.1186/s12944-019-1141-1
Güler, Ş., Torul, D., Kurt-Bayrakdar, S., Tayyarcan, E. K., Çamsarı, Ç., & Boyacı, İ. H. (2023). Evaluation of antibacterial efficacy of Lawsonia inermis Linn (Henna) on periodontal pathogens using agar well diffusion and broth microdilution methods: An in-vitro study. BioMedicine, 13(3), Article 3. https://doi.org/10.37796/2211-8039.1411
Hafiz, H., Chukwu, O. O. C., & Nura, S. (2012). The potentials of henna (Lawsonia inermis L.) leaves extracts as counter stain in gram staining reaction. Bayero Journal of Pure and Applied Sciences, 5(2), 56–60. https://doi.org/10.4314/bajopas.v5i2.10
Ibrahim, M. S. S., Rasool, C. S., & Al-Asady, A. A. (2021). Antimicrobial activity of crude henna extract against Gram-positive bacteria. MicroMedicine, 9(1), 18–26. https://doi.org/10.22317/imj.v5i3.1036
Jothiprakasam, V., Ramesh, S., & Rajasekharan, S. (2013). Preliminary phytochemical screening and antibacterial activity of Lawsonia inermis Linn (Henna) leaf extracts against reference bacterial strains and clinically important AMPC beta-lactamases producing Proteus mirabilis. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 219–222.
Kouadri, F. (2018). In vitro antibacterial and antifungal activities of the Saudi Lawsonia inermis extracts against some nosocomial infection pathogens. Journal of Pure and Applied Microbiology, 12, 281–286. https://doi.org/10.22207/JPAM.12.1.33
Manso, T., Lores, M., & de Miguel, T. (2021). Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 11, Article 46. https://doi.org/10.3390/antibiotics11010046
Meutia, N., Putra, B., & Jusuf, N. K. (2021). Antifungal activity of henna leaf extract (Lawsonia inermis Linn) against inhibition of Trichophyton rubrum fungal growth cause Tinea unguium. Jurnal Buletin Farmatera, 6, 72–79.
Rad, J.S., Alfatemi, S.M.H., Miri, A. and Rad, M.S. (2013). A study of antibacterial potentiality of some plants extracts against multi-drug resistant human pathogens. Ann. Biol. Res., 4:35-41.
Raja, W., Ovais, M., & Dubey, A. (2013). Phytochemical screening and antibacterial activity of Lawsonia inermis leaf extract. International Journal of Microbiology Research, 4(1), 33–36.
Said, A., Abu Elghait, M., Atta, H.M. and Salem, S.S. (2024). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196:85–98. https://doi.org/10.1007/s12010-023-04482-1
Sharifi-Rad, J., Mnayer, D., Roointan, A., Shahri, F., Ayatollahi, S. A. M., Sharifi-Rad, M., et al. (2016). Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cellular and Molecular Biology, 62(9), 75–82.
Srinivasan, L., Sasaki, Y., Calado, D. P., Zhang, B., Paik, J. H., DePinho, R. A., Kutok, J. L., Kearney, J. F., Otipoby, K. L., & Rajewsky, K. (2009). PI3 kinase signals BCR-dependent mature B cell survival. Cell, 139, 573–586. https://doi.org/10.1016/j.cell.2009.08.041
Ugboko, H. U., Nwinyi, O. C., Oranusi, S. U., Fatoki, T. H., & Omonhinmin, C. A. (2020). Antimicrobial importance of medicinal plants in Nigeria. The Scientific World Journal, 2020, Article ID 7059323, 1–10. https://doi.org/10.1155/2020/7059323
WHO. (2019). New report calls for urgent action to avert antimicrobial resistance crisis.
Youl, O., Konaté, S., Sombié, E. N., Boly, R., Kaboré, B., Koala, M., Zoungrana, A., Savadogo, S., Tahita, C. M., Valea, I., Tinto, H., Hilou, A., & Traoré-Coulibaly, M. (2024). Phytochemical analysis and antimicrobial activity of Lawsonia inermis leaf extracts from Burkina Faso. American Journal of Plant Sciences, 15, 552–576. https://doi.org/10.4236/ajps.2024.157038
Youl, O., Moné-Bassavé, B. R. H., Yougbaré, S., Yaro, B., Traoré, T. K., Boly, R., et al. (2023). Phytochemical screening, polyphenol and flavonoid contents, and antioxidant and antimicrobial activities of Opilia amentacea Roxb. (Opiliaceae) extracts. Applied Biosciences, 2, 493–512. https://doi.org/10.3390/applbiosci2030031
Zaidi, S., Zaidi, A., Amir, S., Ali, R. M., & Syabani, A. A. (2023). Palm art to therapeutic properties: Henna—A potential medicinal plant. International Journal of Technology and Education Research, 1(3), 1–8. https://doi.org/10.63922/ijeter.v1i03.363
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Garba, M. U., Adamu, F. U., Mairami, F. M., Basheer, A., Aminu, M. A., Bukar, F. M., Yakubu, U. I., Nura, S.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.