Multidrug Resistance Profiling of Some Bacterial Pathogens from Mobile Phones of Health Workers and Surfaces of Kwara State University (KWASU) Health Centre
DOI:
https://doi.org/10.47430/ujmr.25103.033Keywords:
antibiotic sensitivity, multi-drug resistance, hospital-acquired infections, mobile phones, healthcare centre surfacesAbstract
Study’s Excerpt:
- MDR pathogens were isolated from phones and surfaces at KWASU health centre.
- aureus and K. pneumoniae showed 100% multidrug resistance.
- coli isolates exhibited high resistance to six common antibiotics.
- aeruginosa showed total resistance to five major antibiotics.
- Findings highlight urgent need for routine disinfection and surveillance.
Full Abstract:
Multidrug resistance (MDR) is a major public health challenge, and the direct and indirect transmission of these resistant pathogens can occur via healthcare centre surfaces and the phones of healthcare personnel. This study aimed to investigate the multidrug resistance profile of pathogenic bacteria present on the phones of health officers and surfaces of the KWASU health centre, Malete. A total of 40 swab samples were obtained from phones and different surfaces in the centre, and cultured on selective media to obtain Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli with a prevalence of 100%, 50%, 50% and 65% prevalence, respectively. Antibiotic susceptibility testing revealed widespread MDR among the isolates. Staphylococcus aureus exhibited 100% MDR, with complete resistance to pefloxacin, cefuroxime, amoxicillin, erythromycin, and azithromycin, and reduced susceptibility (15–24%) to gentamicin, ciprofloxacin, ceftriaxone (Rocephin), and levofloxacin. Klebsiella pneumoniae also showed 100% MDR, displaying total resistance to augmentin, pefloxacin, and ceftriaxone, and minimal susceptibility (0–24%) to other agents. Pseudomonas aeruginosa was completely resistant to augmentin, streptomycin, cefuroxime, ceporex, and ceftriaxone, indicating moderate to high MDR prevalence among its isolates. Escherichia coli demonstrated high MDR prevalence, with partial resistance to augmentin (92.3%) and cefuroxime (69.3%), and complete resistance to ceftazidime, ciprofloxacin, ceporex, ceftriaxone, and streptomycin. The detection of MDR pathogens on these phones and surfaces calls for stricter disinfection practices, phone hygiene and routine antimicrobial surveillance practices.
Downloads
References
Adenipekun, E. O., Olutekunbi, L. S., Aikhomu, V. A., & Adekunle-Salami, I. M. (2023). Detection of multidrug-resistant gram-negative organisms in Lagos state public hospitals environmental surfaces. Pan African Journal of Life Sciences, 6(3), 555–563. https://doi.org/10.36108/pajols/2202/60.0360
Agbabiaka, T. O., Sule, I. O., Uthman, L., & Odebisi-Omokanye, M. B. (2020). Antibacterial efficacy of aqueous and ethanolic extracts of Hibiscus sabdariffa and Ocimum gratissimum on some selected gram-negative bacteria. Centrepoint Journal (Science Edition), 26(1), 98–109.
Amisano, F., Mercuri, P., Fanara, S., Verlaine, O., Motte, P., Frère, J. M., & Galleni, M. (2025). Outer membrane permeability of Pseudomonas aeruginosa through β-lactams: New evidence on the role of OprD and OpdP porins in antibiotic resistance. Microbiology Spectrum, 13(4), e00495-24. https://doi.org/10.1128/spectrum.00495-24
Anokwute, I. I., Onwudiwe, R. U., Kalu, E., Madubuko, C. G., Egbulem, C. T., & Eluchie, E. C. (2025). Determination of the common microorganisms present in the intensive care unit of Federal Teaching Hospital Owerri, Southeast Nigeria: A prospective, descriptive cross-sectional study. Nigerian Postgraduate Medical Journal, 32(1), 19–24. https://doi.org/10.4103/npmj.npmj_245_24
Ashefo, D. P., Ngwai, Y. B., & Ishaleku, D. (2023). Isolation and antimicrobial resistance phenotype of Klebsiella pneumoniae from the urine of suspected UTI patients attending public hospitals in Nasarawa South Senatorial District, Nasarawa State, Nigeria. Fudma Journal of Sciences, 7(1), 119–125. https://doi.org/10.33003/fjs-2023-0701-1258
Bai, H. J., Geng, Q. F., Jin, F., & Yang, Y. L. (2024). Epidemiologic analysis of antimicrobial resistance in hospital departments in China from 2022 to 2023. Journal of Health, Population and Nutrition, 43(1), 39. https://doi.org/10.1186/s41043-024-00526-2
Belay, W. Y., Getachew, M., Tegegne, B. A., Teffera, Z. H., Dagne, A., Zeleke, T. K., ... & Aschale, Y. (2024). Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Frontiers in Pharmacology, 15, 1444781. https://doi.org/10.3389/fphar.2024.1444781
Bissong, M., & Moukou, M. (2022). Mobile phones of hospital workers: A potential reservoir for the transmission of pathogenic bacteria. African Journal of Clinical and Experimental Microbiology, 23(4), 407–415. https://doi.org/10.4314/ajcem.v23i4.9
Brdová, D., Ruml, T., & Viktorová, J. (2024). Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resistance Updates, 77, 101147. https://doi.org/10.1016/j.drup.2024.101147
Chia, P. Y., Sengupta, S., Kukreja, A., Ponnampalavanar, S. L., Ng, O. T., & Marimuthu, K. (2020). The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrobial Resistance and Infection Control, 9, 1–11. https://doi.org/10.1186/s13756-020-0685-1
Clinical and Laboratory Standards Institute. (2024). Performance standard for antimicrobial susceptibility testing (34th ed.). CLSI supplement M100.
Cruz-López, F., Martínez-Meléndez, A., & Garza-González, E. (2023). How does hospital microbiota contribute to healthcare-associated infections? Microorganisms, 11(1), 192. https://doi.org/10.3390/microorganisms11010192
Elbarghathi, N., Ahwaide, H., Eldernawi, M., & Abdulmawlay, M. (2025). Mobile phones and multidrug resistant bacteria: A growing concern for healthcare workers. Libyan Medical Journal, 74–86. https://doi.org/10.69667/lmj.2517113
Eze, J. C., Agbo, J. A., Ugwuanyi, D. C., Chiegwu, H. U., Ezeagwuna, D., & Nchey-Achukwu, C. S. (2022). Mobile phones as a source of nosocomial infection in the radiology department of a teaching hospital. Journal of Health and Medical Sciences, 5(2). https://doi.org/10.31014/aior.1994.05.02.221
Ezeh, C. K., Digwo, D. C., Okeke, I. A., Elebe, P. C., & Ezeh, E. O. (2024). A systematic review and meta-analysis on the prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Nigeria. African Health Sciences, 24(3), 30–40.
Ferdous, M. L., Hossain, M. N., Ali, M. O., Islam, M. S., & Yasmin, S. (2021). Morphological, biochemical and molecular identification of the wild strain of Agrobacterium tumefaciens from crown gall infected mango tree. Fundamental and Applied Agriculture, 6(1), 43–49. https://doi.org/10.5455/faa.136134
Fidelis, C. E., Orsi, A. M., Freu, G., Gonçalves, J. L., & Santos, M. V. D. (2024). Biofilm formation and antimicrobial resistance of Staphylococcus aureus and Streptococcus uberis isolates from bovine mastitis. Veterinary Sciences, 11(4), 170. https://doi.org/10.3390/vetsci11040170
Hassan, M. A., Abd El-Aziz, S., Elbadry, H. M., El-Aassar, S. A., & Tamer, T. M. (2022). Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi Journal of Biological Sciences, 29(4), 2978–2988. https://doi.org/10.1016/j.sjbs.2022.01.015
Kimwele, C. M., Waithaka, S. K., & Ngala, J. C. (2024). Examining major sources of bacterial contaminants, distribution and their susceptibility to antibiotics in Kitui County Referral Hospital. Journal of Medical and Biomedical Laboratory Sciences Research, 4(1), 9.
Naidoo, N., & Zishiri, O. T. (2025). Presence, pathogenicity, antibiotic resistance, and virulence factors of Escherichia coli: A review. Bacteria, 4(1), 16. https://doi.org/10.3390/bacteria4010016
Puzi, C. P., de Almeida, N. F., de Almeida Leão, D., de Souza, D. F., & Baptista, A. B. (2022). Prevalence of multi-resistant bacteria, environmental contamination and routine practices in a public hospital. Research, Society and Development, 11(13), e142111335020. http://dx.doi.org/10.33448/rsd-v11i13.35020
Rashed, E., & Zaid, B. A. (2022). Detection of some virulence factors and antibiotic resistance of Staphylococcus aureus isolated from clinical cases. International Journal of Health Sciences, 6(S2), 12862–12870. https://doi.org/10.53730/ijhs.v6nS2.8391
Ruiz-Lievano, A. P., Cervantes-Flores, F., Nava-Torres, A., Carbajal-Morales, P. J., Villaseñor-Garcia, L. F., & Zavala-Cerna, M. G. (2024). Fluoroquinolone resistance in Escherichia coli causing community-acquired urinary tract infections: A systematic review. Microorganisms, 12(11), 2320. https://doi.org/10.3390/microorganisms12112320
Ryabinina, O., Andoh, D., Kellett, S., Seini, M. M., Debrah, A. A., Arhin, R. E., ... & Yahaya, E. S. (2024). Contribution of mobile phones to the transmission of healthcare-associated infections in healthcare settings: Cross-sectional study at the tertiary hospital in Accra, Ghana. SSRN. https://doi.org/10.2139/ssrn.4993228
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
Sapkota, J., Jha, B., Mishra, B., Shrestha, D., Barakoti, A., & Sharma, M. (2020). Profile and antibiotic susceptibility pattern of bacterial isolates from mobile phones of healthcare workers in a tertiary care centre of Nepal. Journal of Institute of Medicine, 42(2), 29–32. https://doi.org/10.3126/jiom.v42i2.37532
Shah, A. A., Alwashmi, A. S., Abalkhail, A., & Alkahtani, A. M. (2025). Emerging challenges in Klebsiella pneumoniae: Antimicrobial resistance and novel approach. Microbial Pathogenesis, 107399. https://doi.org/10.1016/j.micpath.2025.107399
Sharma, S., Kumari, B., Ali, A., Yadav, R. K., Sharma, A. K., Sharma, K. K., & Singh, G. K. (2022). Mobile technology: A tool for healthcare and a boon in pandemic. Journal of Family Medicine and Primary Care, 11(1), 37–43. https://doi.org/10.4103/jfmpc.jfmpc_1114_21
Stephens, B., Azimi, P., Thoemmes, M. S., Heidarinejad, M., Allen, J. G., & Gilbert, J. A. (2019). Microbial exchange via fomites and implications for human health. Current Pollution Reports, 5, 198–213. https://doi.org/10.1007/s40726-019-00126-3
White, R. T. (2021). Escherichia coli: Placing resistance to third-generation cephalosporins and fluoroquinolones in Australia and New Zealand into perspective. Microbiology Australia, 42(3), 104–110. https://doi.org/10.1071/MA21031
Yang, J., Xu, J. F., & Liang, S. (2024). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and emerging treatment. Critical Reviews in Microbiology, 18, 1–19. https://doi.org/10.1080/1040841X.2024.2429599
Zenbaba, D., Sahiledengle, B., Beressa, G., Desta, F., Teferu, Z., Nugusu, F., ... & Chattu, V. K. (2023). Bacterial contamination of healthcare workers' mobile phones in Africa: A systematic review and meta-analysis. Tropical Medicine and Health, 51, 55. https://doi.org/10.1186/s41182-023-00547-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lateefah Uthman-Saheed, Muhammed Mubarak Abdulrazaq

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.