Evaluation of Rhizosphere Bacteria Associated with Spinacia oleracea for Plant Growth-Promoting Potentials in Bida, Niger State, Nigeria

Authors

  • Asma’u Muhammad Abdullahi Department of Biological Sciences, The Federal Polytechnic Bida, Niger State, Nigeria & Department of Microbiology, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria
  • Abdullahi Dabban Idris Department of Biological Sciences, The Federal Polytechnic Bida, Niger State, Nigeria & Department of Microbiology, Federal University of Technology, Minna, Niger State, Nigeria
  • Habiba Muhammad Abdullahi Newgate University, Minna, Niger State, Nigeria
  • Mohammed Babadoko Aliyu Department of Biological Sciences, The Federal Polytechnic Bida, Niger State, Nigeria
  • Oluwatoyosi Felicia Ajayi Department of Biological Sciences, The Federal Polytechnic Bida, Niger State, Nigeria

DOI:

https://doi.org/10.47430/ujmr.25103.054

Keywords:

Rhizosphere, Spinach Plant, Bacteria, Growth Promoting Potentials

Abstract

Study’s Excerpt:

  • Rhizosphere bacteria of Spinacia oleracea were isolated and studied.
  • Four distinct bacterial species were identified from three farmlands.
  • Bacillus cereus showed the highest frequency at 37.5% among isolates.
  • Isolates produced ammonia, phosphatase, protease, and amylase enzymes.
  • Findings highlight potential of these bacteria as sustainable biofertilizers.

Full Abstract:

The study aimed to assess the rhizosphere bacteria of the spinach plant (Spinacia oleracea) for their growth-promoting potentials.  Rhizosphere soil samples were collected from three different farmlands within Bida metropolis, namely Bangaie, Wuya, and Tako Wasa.  The samples were isolated for bacteria growth, and the isolated bacteria were identified for their potential to promote plant growth using standard procedures.  A total of four distinct bacteria were isolated with their frequency of occurrence as Bacillus cereus (37.5%), Klebsiella pneumoniae and Bacillus specie (25% each), and Micrococcus luteus (12.5%).  The results showed that the isolated bacteria were able to produce various plant growth-promoting substances such as ammonia, phosphatase solubilization, proteolytic enzyme activity, and amylase activity.  These findings suggest that rhizosphere bacteria of Spinacia oleracea have great potential as biofertilizers, which could contribute to sustainable agriculture practices.  This study provides valuable insights into the potential of rhizosphere bacteria in promoting plant growth and highlights the importance of further studying their role in sustainable crop production.

Downloads

Download data is not yet available.

References

Afrin, S., Tamanna, T., Shahajadi, U. F., Bhowmik, B., Jui, A. H., Miah, M. A. S., & Bhuiyan, M. N. I. (2024). Characterization of protease-producing bacteria from garden soil and antagonistic activity against pathogenic bacteria. The Microbe, 4, 100123. https://doi.org/10.1016/j.microb.2024.100123

Agbodjato, N. A., & Babalola, O. O. (2024). Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ, 12, e16836. https://doi.org/10.7717/peerj.16836

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. JKSUS, 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

Albu, E., Prisacaru, A. E., Ghinea, C., Ursachi, F., & Apostol, L. C. (2024). Ready-to-use vegetable salads: Physicochemical and microbiological evaluation. Applied Sciences, 14(7), 3068. https://doi.org/10.3390/app14073068

Alessa, O., Najla, S., & Murshed, R. (2017). Improvement of yield and quality of two Spinacia oleracea L. varieties by using different fertilizing approaches. Physiology and Molecular Biology of Plants, 23(3), 693–702. https://doi.org/10.1007/s12298-017-0453-8

Ali, S. T., Ayub, A., Ali, S. N., Begum, S., Siddiqui, B. S., Mahmood, N., & Khan, K. A. (2017). Antibacterial activity of methanolic extracts from some selected medicinal plants. FUUAST Journal of Biology, 7(1), 123–125.

Al-Khayri, J. M. (2012). Genetic transformation in Spinacia oleracea L. (spinach). Plant Protoplasts and Genetic Engineering, 6(34), 279–288. https://doi.org/10.1007/978-3-642-57840-3_25

Altaf, M. A., Shahid, R., Qadir, A., Naz, S., Ren, M., Ejaz, S., Altaf, M. M., & Shakoor, A. (2019). Potential Role of Plant Growth Promoting Rhizobacteria (PGPR) to Reduce Chemical Fertilizer in Horticultural Crops. International Journal of Research in Agriculture and Forestry, 6(15), 21–30.

Alzahrani, K. K., Jastaniah, S. D., Amasha, R. H., & Aly, M. M. (2024). Some direct and indirect mechanisms of endophytic bacteria that associated with the medicinal plant Areva javanica from Shada Al-Asfal Mountain. Preprints. https://doi.org/10.20944/preprints202407.0145.v1

Ammar, G. (2024). Plant beneficial symbionts: Fashionable charming members in the phytomicrobiome community. Future Perspectives of Medical, Pharmaceutical and Environmental Biotechnology, 1(1), 19–30. https://doi.org/10.21608/fpmpeb.2024.266342.1007

Anas, M., Khalid, A., Saleem, M. H., Ali Khan, K., Ahmed Khattak, W., & Fahad, S. (2025). Symbiotic synergy: Unveiling plant-microbe interactions in stress adaptation. Journal of Crop Health, 77(1), 1–21. https://doi.org/10.1007/s10343-024-01070-z

Andreote, F. D., & Pereira, E. S. M. C. (2017). Microbial communities associated with plants: learning from nature to apply it in agriculture. Current Opinion in Microbiology, 37, 29–34. https://doi.org/10.1016/j.mib.2017.03.011

Ansabayeva, A., Makhambetov, M., Rebouh, N. Y., Abdelkader, M., Saudy, H. S., Hassan, K. M., ... & Ebrahim, M. (2025). Plant growth-promoting microbes for resilient farming systems: Mitigating environmental stressors and boosting crops productivity-A review. Horticulturae, 11(3), 260. https://doi.org/10.3390/horticulturae11030260

Arunachalam, S., Schwinghamer, T., Dutilleul, P., & Smith, D. L. (2017). Multi-year effects of biochar, lipo-chitooligosaccharide, thuricin 17, and experimental bio-fertilizer for switchgrass. Agronomy Journal, 110, 77–84. https://doi.org/10.2134/agronj2017.05.0278

Ayinde, T. B., Nicholson, C. F., & Ahmed, B. (2025). Comparative economic and environmental analysis of open field (rainfed and irrigated) and environmental agriculture (screenhouse) leafy and pulpy vegetables production systems in North West Nigeria. SocArXiv. https://doi.org/10.31223/X5M14V

Bakki, M., Banane, B., Marhane, O., Esmaeel, Q., Hatimi, A., Barka, E. A., ... & Bouizgarne, B. (2024). Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Frontiers in Microbiology, 15, 1289466. https://doi.org/10.3389/fmicb.2024.1289466

David, E. C., & Rengel, Z. (2024). Biology and chemistry of nutrient availability in the rhizosphere. In Mineral nutrition of crops (pp. 1–40). CRC Press. https://doi.org/10.1201/9781003578468-1

Ekobol, N., Boonjaraspinyo, S., Eamudomkarn, C., & Boonmars, T. (2025). Tricky with heat and salt: Soil factors, thermotaxis, and potential for heat-saline agar trapping of Strongyloides larvae. Biology, 14(5), 559. https://doi.org/10.3390/biology14050559

Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59–75. https://doi.org/10.3390/bacteria3020005

Ibrahim, I. M., Oluchukwu, N. V., Salisu, A., & Nkemakonam, O. M. (2025). Nutritional and phytochemical analysis of spinach leaf aqueous extract: A comprehensive study on proximate composition, minerals, vitamins, and antioxidant activity. Eurasian Journal of Science and Technology, 5(3), 302–311.

Imade, E. E., & Babalola, O. O. (2021). Biotechnological utilization: the role of Zea mays rhizospheric bacteria in ecosystem sustainability. Applied Microbiology and Biotechnology, 105(11), 4487–4500. https://doi.org/10.1007/s00253-021-11351-6

Islambulchilar, M. (2024). Thirst-quenching and mucilage-containing herbs in Persian Medicine: New perspectives on old practice. Advances in Integrative Medicine, 11(4), 230–239. https://doi.org/10.1016/j.aimed.2024.09.008

Kaltenpoth, M., Flórez, L. V., Vigneron, A., Dirksen, P., & Engl, T. (2025). Origin and function of beneficial bacterial symbioses in insects. Nature Reviews Microbiology, 1–17. https://doi.org/10.1038/s41579-025-01164-z

Karimzadeh, Z., Soltani Toularoud, A. A., Arkhazloo, H. S., & Rouhi-Kelarlou, T. (2024). Analyzing the impact of variations in land use and elevation on selected soil microbial indices and spatial distribution. Environmental Monitoring and Assessment, 197(1), 16. https://doi.org/10.1007/s10661-024-13358-8

Kaur, S., Rattan, P., Reddy, A. H., & Pathania, A. (2022). Influence of planting time on yield and quality of spinach (Spinacia oleracea) varieties. International Journal of Plant & Soil Science, 34(23), 1174–1190. https://doi.org/10.9734/ijpss/2022/v34i232531

Krishna, H., Hebbar, S., Kumar, P., Sharma, S., Kumar, R., Tiwari, S. K., ... & Behera, T. K. (2024). Navigating challenges and prospects in off-season vegetable production. Vegetable Science, 51, 97–105. https://doi.org/10.61180/vegsci.2024.v51.spl.09

Kumar, A., & Chae, P. S. (2024). A naphthoquinoline-dione-based Cu2+ sensing probe with visible color change and fluorescence quenching in an aqueous organic solution. Molecules, 29(4), 808. https://doi.org/10.3390/molecules29040808

Kumar, S. S., Kadier, A., Malyan, S. K., Ahmad, A., & Bishnoi, N. R. (2017). Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 367–394). Springer. https://doi.org/10.1007/978-981-10-6593-4_15

Li, N., Wu, M., Wang, L. U., Tang, M., Xin, H., & Deng, K. (2024). Efficient isolation of outer membrane vesicles (OMVs) secreted by Gram-negative bacteria via a novel gradient filtration method. Membranes, 14(6), 135. https://doi.org/10.3390/membranes14060135

Marma, M., Chakroborty, K., Lee, J. M., Rahman, Z., & Rafiquzzaman, S. M. (2025). Characterization and enzymatic assay of cellulase-producing probiotic bacteria isolated from traditional fermented bamboo of Bangladesh. HAYATI Journal of Biosciences, 32(2), 547–560. https://doi.org/10.4308/hjb.32.2.547-560

Mesele, E., Kebede, A., Redda, Y. T., Yaekob, A. T., Kasegn, M. M., Meresa, B. K., ... & Gebreyohannes, G. (2025). Potential of indigenous rhizobia for enhancing plant growth and improving faba bean (Vicia faba L.) yield in Mekelle Ethiopia. Discover Agriculture, 3(1), 57. https://doi.org/10.1007/s44279-025-00212-9

Mukherjee, A., Singh, B. N., Kaur, S., Sharma, M., de Araújo, A. S. F., de Araujo Pereira, A. P., ... & Verma, J. P. (2024). Unearthing the power of microbes as plant microbiome for sustainable agriculture. Microbiological Research, 286, 127780. https://doi.org/10.1016/j.micres.2024.127780

Okoma, R. N., Omuse, E. R., Mutyambai, D. M., Beesigamukama, D., Murongo, M. F., Subramanian, S., & Chidawanyika, F. (2025). An assessment of vegetable production constraints, trait preferences and willingness to adopt sustainable intensification options in Kenya and Uganda. Frontiers in Sustainable Food Systems, 9, 1471333. https://doi.org/10.3389/fsufs.2025.1471333

Prajapati, V., Patel, S., Ray, S., & Patel, K. C. (2022). Identification of protease enzymes involved in biocontrol activity. In Practical handbook on agricultural microbiology (pp. 323–329). https://doi.org/10.1007/978-1-0716-1724-3_43

Samal, D. K., & Sukla, L. B. (2024). Assessment of potent phosphate-solubilizing bacteria isolated from rice fields in Odisha and unraveling their growth-promoting efficacies. Geomicrobiology Journal, 41(2), 135–148. https://doi.org/10.1080/01490451.2023.2293735

Sana, S., Sheikh, A., Maheen, M. Z., Mukhtar, N., Yaqub, T., Ali, S., ... & Liaqat, I. (2023). Fundamentals of microbiology: A laboratory manual.

Sarma, U., & TR, B. (2024). Dietary phytonutrients in common green leafy vegetables and the significant role of processing techniques on spinach: A review. Food Production, Processing and Nutrition, 6(1), 10. https://doi.org/10.1186/s43014-023-00192-7

Sharma, P., & Chandra, R. (2024). Phytoremediation mechanism and role of plant growth promoting rhizobacteria in weed plants for eco-restoration of hazardous industrial waste polluted site: A review. Environmental Science and Pollution Research, 31(30), 42495–42520. https://doi.org/10.1007/s11356-024-33910-w

Sharma, R., Aadesh, A., Jadoun, S. S., Panwar, K., & Tomar, A. (2024). Growth and performance of baby spinach grown under different organic fertilizer. In BIO Web of Conferences (Vol. 110, p. 04005). EDP Sciences. https://doi.org/10.1051/bioconf/202411004005

Soponputtaporn, S., Srithaworn, M., Promnuan, Y., Srirat, P., & Chunhachart, O. (2024). Indole-3-acetic acid producing yeasts in the phyllosphere of legumes: Benefits for chili growth. Trends in Sciences, 21(3), 7335. https://doi.org/10.48048/tis.2024.7335

Tariq, A., Guo, S., Farhat, F., & Shen, X. (2025). Engineering synthetic microbial communities: Diversity and applications in soil for plant resilience. Agronomy, 15(3), 513. https://doi.org/10.3390/agronomy15030513

Touch, V., Tan, D. K., Cook, B. R., Li Liu, D., Cross, R., Tran, T. A., ... & Cowie, A. (2024). Smallholder farmers' challenges and opportunities: Implications for agricultural production, environment and food security. Journal of Environmental Management, 370, 122536. https://doi.org/10.1016/j.jenvman.2024.122536

Uyi, G. O., Idris, S. M., Sani, B. E., Upla, P. U., Chuku, A., & Okunade, O. A. (2024). Root colonization by microorganisms and the effects of PGPR on plant growth: A mini-review. Jurnal Biota, 10(1), 34–43. https://doi.org/10.19109/Biota.v10i1.18948

Varela, C., Silva, F., Costa, G., & Cabral, C. (2023). Alkaloids: Their relevance in cancer treatment. In New insights into glioblastoma (pp. 361–401). Academic Press. https://doi.org/10.1016/B978-0-323-99873-4.00006-2

Vasavi, S., Anandaraja, N., Murugan, P. P., Latha, M. R., & Selvi, R. P. (2025). Challenges and strategies of resource poor farmers in adoption of innovative farming technologies: A comprehensive review. Agricultural Systems, 227, 104355. https://doi.org/10.1016/j.agsy.2025.104355

Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609

Woo, J. M., Kim, H. S., Lee, I. K., Byeon, E. J., Chang, W. J., & Lee, Y. S. (2024). Potentiality of beneficial microbe Bacillus siamensis GP-P8 for the suppression of anthracnose pathogens and pepper plant growth promotion. The Plant Pathology Journal, 40(4), 346. https://doi.org/10.5423/PPJ.OA.01.2024.0022

Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C. B., Zhu, Y. G., ... & Zhuang, M. (2024). Climate change exacerbates the environmental impacts of agriculture. Science, 385(6713), eadn3747. https://doi.org/10.1126/science.adn3747

Youseif, S. H. (2018). Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences, 63(1), 25–35. https://doi.org/10.1016/j.aoas.2018.04.002

Published

30-06-2025

How to Cite

Abdullahi, A. M., Idris, A. D., Abdullahi, H. M., Aliyu, M. B., & Ajayi, O. F. (2025). Evaluation of Rhizosphere Bacteria Associated with Spinacia oleracea for Plant Growth-Promoting Potentials in Bida, Niger State, Nigeria. UMYU Journal of Microbiology Research (UJMR), 10(3), 572–581. https://doi.org/10.47430/ujmr.25103.054