Isolation and Characterisation of Biosurfactant-producing Pseudomonas specie from Soil

Authors

  • Kamaludeen Kabir Department of Microbiology, Umaru Musa Yar’adua University, Katsina.

DOI:

https://doi.org/10.47430/ujmr.1942.001

Abstract

Bacteria, especially members of the genera Bacillus and pseudomonads express surface-active compounds that are useful in biotechnology. Studies have shown that biosurfactant-expressing strains are rapidly isolated from both soil and water environments that are either contaminated or uncontaminated. The aim of this research is to isolate a large collection of surfactants expressing pseudomonads and to screen and characterised them for biosurfactant production. In this study, bacterial strains were isolated from Dundee Botanic Garden (United Kingdom) soil using pseudomonas selection agar supplemented with centrimide, fusidin and cephaloridine media (PSA+CFC) that select only pseudomonads. The isolates where screened for liquid surface tension reducing ability (LSTRA) using the drop-collapse assay before characterising the key strains using different metabolic and growth-based assays including their antibiogram. At least 30 key strains were identified from a collection of 58 isolated strains and further studied for diversity. A total of 27 assays were conducted to ascertain the phenotype of the 30 keys strains. All the 30 strains (100%) tested positive for catalase and glucose utilisation, while 28 (93%) tested positive for oxidase and KB* broth culture acidity. Also 22 (73%), 26 (87%) and 18 (60%) were found to be positive for swarming, swimming and twitching motilities respectively, while 22 (73%) were positive for lipase, 26 (87%) for protease and 27 (90%) for gelatinase. Furthermore, 12 (40%), 2 (7%), and 9 (30%) were resistance to mercury, kanamycin and to nalidixic acid respectively. Hierarchical cluster analysis of phenotypic characterisation data confirmed that these strains were a diverse group of pseudomonads.

Downloads

Download data is not yet available.

References

Adrio J. L. and Demain A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules 4, 117-139.

https://doi.org/10.3390/biom4010117

Agaras B. C., Scandiani M., Luque A., Fernández L., Farina F., Carmona M., Gally M. and Valverde C. (2015). Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of pseudomonas spp. isolates. Biological Control 90, 173-186.

https://doi.org/10.1016/j.biocontrol.2015.07.003

Andersen S. M., Johnsen K., Sørensen J., Nielsen P. andJacobsen C. S. (2000). Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. International Journal of Syst Evol Microbiology50, 1957-1964.

https://doi.org/10.1099/00207713-50-6-1957

Bochner B. R. (2009). Global phenotypic characterization of bacteria. FEMS Microbioliogy Rev 33, 191-205.

https://doi.org/10.1111/j.1574-6976.2008.00149.x

Bossis E., Lemanceau P., Latour X. andGardan L. (2000). The taxonomy of pseudomonas fluorescens and pseudomonas putida: Current status and need for revision. Agronomie 20, 51-63.

https://doi.org/10.1051/agro:2000112

Campbell J. I., Jacobsen C. S. andSørensen J. (1995). Species variation and plasmid incidence among fluorescent pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbiol Ecol 18, 51-62.

https://doi.org/10.1111/j.1574-6941.1995.tb00163.x

Davey M. E., Caiazza N. C. andO'Toole G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in pseudomonas aeruginosa PAO1. J Bacteriol 185, 1027-1036.

https://doi.org/10.1128/JB.185.3.1027-1036.2003

Desai J. D. and Banat I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61, 47-64.

https://doi.org/10.1128/.61.1.47-64.1997

https://doi.org/10.1128/mmbr.61.1.47-64.1997

Fiechter A. (1992). Biosurfactants: Moving towards industrial application. Trends in Food Science Technology3, 286-293.

https://doi.org/10.1016/S0924-2244(10)80013-5

Georgiou G., Lin S. andSharma M. M. (1992). Surface-active compounds from microorganisms. Bio/Technology 10, 60-65.

https://doi.org/10.1038/nbt0192-60

Haas D. and Défago G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3, 307-319.

https://doi.org/10.1038/nrmicro1129

Hamouda T., Myc A., Donovan B., Shih A. Y., Reuter J. D. and Baker J. R. (2001). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156, 1-7.

https://doi.org/10.1078/0944-5013-00069

Janda J. M. and Abbott S. L. (2002). Bacterial identification for publication: When is enough enough? J Clin Microbiol 40, 1887-1891.

https://doi.org/10.1128/JCM.40.6.1887-1891.2002

Kirk O., Borchert T. V. and Fuglsang C. C. (2002). Industrial enzyme applications. Curr Opin Biotechnol 13, 345-351.

https://doi.org/10.1016/S0958-1669(02)00328-2

Kumar A., Kumar A., Devi S., Patil S., Payal C. andNegi S. (2012). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: An in vitro study. Recent Research in Science and Technology 4.

Mead G. and Adams B. (1977). A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage. Br Poult Sci 18, 661-670.

https://doi.org/10.1080/00071667708416418

Mercado-Blanco J. and Bakker P. A. (2007). Interactions between plants and beneficial pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92, 367-389.

https://doi.org/10.1007/s10482-007-9167-1

Moore E. R., Mau M., Arnscheidt A., Böttger E. C., Hutson R. A., Collins M. D. and Timmis K. N. (1996). The determination and comparison of the 16S rRNA gene sequences of species of the genus pseudomonas (sensu stricto and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19, 478-492.

https://doi.org/10.1016/S0723-2020(96)80021-X

Mulligan C., Yong R. andGibbs B. (2001). Surfactant-enhanced remediation of contaminated soil: A review. Eng Geol 60, 371-380.

https://doi.org/10.1016/S0013-7952(00)00117-4

Peix A., Ramírez-Bahena M. andVelázquez E. (2009). Historical evolution and current status of the taxonomy of genus pseudomonas. Infection, Genetics and Evolution 9, 1132-1147.

https://doi.org/10.1016/j.meegid.2009.08.001

Raaijmakers J. M., de Bruijn I. and de Kock M. J. (2006). Cyclic lipopeptide production by plant-associated pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19, 699-710.

https://doi.org/10.1094/MPMI-19-0699

Raaijmakers J. M., Paulitz T. C., Steinberg C., Alabouvette C. and Moënne-Loccoz Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321, 341-361.

https://doi.org/10.1007/s11104-008-9568-6

Raaijmakers J. M., De Bruijn I., Nybroe O. andOngena M. (2010). Natural functions of lipopeptides from bacillus and pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Reveiw34, 1037-1062.

https://doi.org/10.1111/j.1574-6976.2010.00221.x

Robertson M., Hapca S. M., Moshynets O. andSpiers A. J. (2013). Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek 103, 251-259.

https://doi.org/10.1007/s10482-012-9796-x

Ron E. Z. and Rosenberg E. (2001a). Natural roles of biosurfactants. Environmental Microbiol 3, 229-236.

https://doi.org/10.1046/j.1462-2920.2001.00190.x

Sáenz-Marta C. I., Ballinas-Casarrubias M., Rivera-Chavira B. E. and Nevárez-Moorillón G. V. (2015). Biosurfactants as useful tools in bioremediation. Advances in Bioremediation of Wastewater and Polluted Soil.2nd Ed.Tech Publish , 94-109.

https://doi.org/10.5772/60751

Sandman K. and Ecker C. (2014). Pseudomonas isolation and identification: An introduction to the challenges of polyphasic taxonomy. J Microbiol Biol Educ 15, 287-291.

https://doi.org/10.1128/jmbe.v15i2.754

Smits W. K., Kuipers O. P., andVeening J. (2006). Phenotypic variation in bacteria: The role of feedback regulation. Nature Reviews Microbiology 4, 259-271.

https://doi.org/10.1038/nrmicro1381

Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A. andHarayama S. (2000). Phylogeny of the genus pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385-2394.

https://doi.org/10.1099/00221287-146-10-2385

Yamamoto S. and Harayama S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of pseudomonas putida strains. Applied Environmental Microbiology61, 1104-1109.

https://doi.org/10.1128/aem.61.3.1104-1109.1995

Downloads

Published

30-12-2019

How to Cite

Kamaludeen Kabir. (2019). Isolation and Characterisation of Biosurfactant-producing Pseudomonas specie from Soil. UMYU Journal of Microbiology Research (UJMR), 4(2), 1–6. https://doi.org/10.47430/ujmr.1942.001