Crispr Cas System in Plant Genome Editing a New Opportunity in Agriculture to Boost Crop Yield

Authors

  • Sunusi, M. Department of Crop Science Faculty of Agriculture, Federal University Dutse, Jigawa State
  • Lurwanu, Y. Crop Protection Department, Bayero University Kano .Nigeria
  • Halidu, J. Department of Crop Science Faculty of Agriculture, Federal University Dutse, Jigawa State
  • Musa, H. Department of Crop Science Faculty of Agriculture, Federal University Dutse, Jigawa State

DOI:

https://doi.org/10.47430/ujmr.1831.017

Keywords:

Crispr-Cas9, Precise genome engineering, Crop improvement, Crop Yield, Gene editing technology

Abstract

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 technology evolved from a type II bacterial immune system develop in 2013 This system employs RNA-guided nuclease,  CRISPR associated (Cas9) to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. The system has the ability to detect specific sequences of letters within the genetic code and to cut DNA at a specific point. Simultaneously with other sequence-specific nucleases, CRISPR/ Cas9 have already breach the boundaries and made genetic engineering much more versatile, efficient and easy also it has been reported to have increased rice grain yield up to 25-30 %, and increased tomato fruits size, branching architecture, and overall plant shape. CRISPR/ Cas also mediated virus resistance in many agricultural crops. In this article, we reviewed the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also described the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; Cas, CRISPR associated; crRNA, CRISPR RNA; tracrRNA, trans-activating crRNA; PAM, protospacer adjacent motif; sgRNA, single guide RNA; gRNA, guide RNA; ssODN, single-stranded DNA oligonucleotide; DSB, double-strand break; NHEJ, non-homologous end joining; HDR, homology directed repair, CRISPRi ,CRISPR interference

Downloads

Download data is not yet available.

References

Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants , 1:15145; https://doi.org/10.1038/nplants.2015. 145.

https://doi.org/10.1038/nplants.2015.145

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. . (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science , 315, 1709-1712.

https://doi.org/10.1126/science.1138140

Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J. . (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. . Science , 321, 960-964.

https://doi.org/10.1126/science.1159689

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., . (2013). Multiplex genome engineering using CRISPR/Cas systems. Science , 339, 819-823.

https://doi.org/10.1126/science.1231143

Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. . (2012). (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Pnas , 109, E2579-E2586.

https://doi.org/10.1073/pnas.1208507109

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A:. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol , 169- 5429-5433.

https://doi.org/10.1128/jb.169.12.5429-5433.1987

Jian-Kang Zhu. (2018). CRISPR-edited rice plants produce major boost in grain yield. pnas .

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA- guided DNA endonuclease in adaptive bacterial immunity. . Science , 337, 816-821.

https://doi.org/10.1126/science.1225829

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE Church GM. ( 2013). RNA-guided human genome engineering via Cas9. Science , 339:823- 826.

https://doi.org/10.1126/science.1232033

Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. . (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity inEscherichia coli. . Nucl. Acids Res. , 39, gkr606-gkr9282.

https://doi.org/10.1093/nar/gkr606

Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R. ( 2013). Trait stacking via targeted genome editing. Plant Biotechnol J. , 11:1126-34.

https://doi.org/10.1111/pbi.12107

Andolfo G, Iovieno P, Frusciante L, Ercolano MR. (2016). Genome-Editing Technologies for enhancing plant disease resistance. Front Plant Sci , 7:1813; PMID:27990151.

https://doi.org/10.3389/fpls.2016.01813

Bikard D, M. L. (2013). Control of gene expression by CRISPR-Cas systems. F1000Prime Rep. , ;5:47.

https://doi.org/10.12703/P5-47

Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. (2005;). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. , 151:2551-61.

https://doi.org/10.1099/mic.0.28048-0

Brooks C, Nekrasov V, Lippman ZB, Van Eck J. . (2014;). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR- Associated9 System. . Plant Physiol. , 166:1292-7.

https://doi.org/10.1104/pp.114.247577

Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW. ( 2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. , 155:1479-91.

https://doi.org/10.1016/j.cell.2013.12.001

Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiplegenomic loci. Nucleic Acids Res, 44, e75.

https://doi.org/10.1093/nar/gkv1533

Daniel Rodríguez-Leal, Zachary H. Lemmon, Jarrett Man, Madelaine E. Bartlett, Zachary B. Lippman. . ( 2017). Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell .

https://doi.org/10.1016/j.cell.2017.08.030

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. , 471:602-7.

https://doi.org/10.1038/nature09886

F. Zhang, Y. Wen, and X. Guo. (2014). CRISPR/Cas9 for genome edit ing: Progress, implications and challenges. Human Molecular genetics , vol. 23, no. 1, pp. R40-R46.

https://doi.org/10.1093/hmg/ddu125

Fauser F, Roth N, Pacher M, Ilg G, Sa' nchez- Ferna' ndez R Biesgen C, Puchta H:. (2012). In planta gene targeting. Proc Natl Acad Sci U S A , 109:7535-7540.

https://doi.org/10.1073/pnas.1202191109

Fauser F, Schiml S, Puchta H. (. 2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. . Plant J , 79:348-59.

https://doi.org/10.1111/tpj.12554

Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P.(2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. , 23:1229-32.

https://doi.org/10.1038/cr.2013.114

Gaj, T., Gersbach, C.A. (2013). ZFN, TALEN,

and CRISPR/Cas-based methods for genome engineering. Trends Biotechno, 31, 397-405.

https://doi.org/10.1016/j.tibtech.2013.04.004

Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. (2015). CRISPR/Cas9-

mediated targeted mutagenesis in Nicotiana tabacum. . Plant Mol Biol , 87:99-110.

https://doi.org/10.1007/s11103-014-0263-0

Gao, Y., and Zhao, Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. , 56:343-349.

https://doi.org/10.1111/jipb.12152

Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P. ( 2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. , 468:67-71.

https://doi.org/10.1038/nature09523

Giovannetti, M., Sbrana, C., Turrini, A. (2005). The impact of genetically modified crops on soil microbial communities. Riv. Biol. Biol. Forum , 98, 393-417.

Hale, C. Z. (2009). RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell , 139, 945-956.

https://doi.org/10.1016/j.cell.2009.07.040

hang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L. . (2016). Effiient and transgene-free genome editing in wheat hrough transient expression of CRISPR/Cas9 DNA or RNA. Nat comun , 7, 12617.

https://doi.org/10.1038/ncomms12617

Horvath P, Barrangou R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, , 167-170.

https://doi.org/10.1126/science.1179555

Hsu PD, Lander ES, Zhang F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell , 157:1262-1278.

https://doi.org/10.1016/j.cell.2014.05.010

Hu, J., Lei, Y., Wong, W.K., Liu, S., Lee, K.C. .(2014). Direct activation of human and mouse genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. , 42, 4375-4390.

https://doi.org/10.1093/nar/gku109

Hwang, W.Y. . (2013). Effiient genome editing in zebrafih using a CRISPR-Cas System. Nat. Biotechnol. , 31, 227-229 .

https://doi.org/10.1038/nbt.2501

J. F. Li, J. E. Norville, and J. Aachi, J. E. Norville, and J. Aach. (2013). Multiplex and homologous recombination- mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 . Nature Biotechnolog , vol. 31, no. 8, pp. 688-691.

https://doi.org/10.1038/nbt.2654

Ji X, Zhang H, Zhang Y, Wang Y, Gao C. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants . nplants , 1:15144; PMID:27251395;

https://doi.org/10.1038/nplants.2015.144

https://doi.org/10.1038/nplants. 2015.144.

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res , 41-188.

https://doi.org/10.1093/nar/gkt780

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. . science ,;337:816-21.

https://doi.org/10.1126/science.1225829

Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J,. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidospis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol , 31:688-691.

https://doi.org/10.1038/nbt.2654

Li Y, Lin Z, Huang C, Zhang Y, Wang Z. (2015). Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering, 31: 13-21.

https://doi.org/10.1016/j.ymben.2015.06.006

Liang Z, Zhang K, Chen K, Gao C. . ( 2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. , 41:63-8.

https://doi.org/10.1016/j.jgg.2013.12.001

Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant , 8,1274- 1284 .

https://doi.org/10.1016/j.molp.2015.04.007

Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., Koonin, E.V. . (2006). (2006). A putative RNA-interference- based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct , 1:7.

https://doi.org/10.1186/1745-6150-1-7

Marraffini, L. a. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322, 1843-1845.

https://doi.org/10.1126/science.1165771

Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X. ( 2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res , 23:1233-6.

https://doi.org/10.1038/cr.2013.123

Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. . (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. , 60:174-82.

https://doi.org/10.1007/s00239-004-0046-3

Mojica, F.J.M., D ez-Villase or, C.S., Garc a- Mart nez, J.S., and Soria, E. . (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J Mol Evol , 60,174-182.

https://doi.org/10.1007/s00239-004-0046-3

Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA- guided endonuclease. Nat Biotechnol , 31 :691-693.

https://doi.org/10.1038/nbt.2655

Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. , 31:839-43.

https://doi.org/10.1038/nbt.2673

Pattanayak V, Lin S, Guilinger JP. (2013). High- throughput profiing of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specifiity. Nature Biotechnology , 31, 839-843.

https://doi.org/10.1038/nbt.2673

Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A. (2015). RNA-guided transcriptional regulationin planta via synthetic dcas9 based- transcription factors. Plant Biotechnol J 13: 578-589. PlantBiotechnol J , 13: 578-589.

https://doi.org/10.1111/pbi.12284

Pourcel C, Salvignol G, Vergnaud G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. . Microbiology , 151, 653-663.

https://doi.org/10.1099/mic.0.27437-0

Puchta H, Fauser F. (2014). Synthetic nucleases for genome engineering in plants:prospects for a bright future. Plant J Cell Mol Biol , 78:727-741.

https://doi.org/10.1111/tpj.12338

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP,Lim WA. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specifi control of gene expression. . Cell , 1173-1183.

https://doi.org/10.1016/j.cell.2013.02.022

Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD,Reyon D, Joung JK, Voytas DF. (2013). Targeted deletion and inversionof tandemly arrayed genes in Arabidopsis thaliana using zincfinger nucleases. G3 (Bethesda, Md , 3:1707- 1715. R. Jansen, J.D. Embden, W. Gaastra, L.M. Schouls. (2002). Identification of genes that are associated with DNA repeats in prokaryotes,. Mol. Microbiol. , 1565- 1575.

https://doi.org/10.1534/g3.113.006270

Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol , 166:455-69.

https://doi.org/10.1104/pp.114.239392

Roukos, V., Voss, T.C., Schmidt, C.K., Lee, S., Wangsa, D., Misteli, T. (2013). Spatial dynamics of chromosome translocations in living cells. Science , 341, 660-664.

https://doi.org/10.1126/science.1237150

Rusk N. (2014). CRISPRs and epigenome editing. Nature Methods , 11, 28.

https://doi.org/10.1038/nmeth.2775

Schiml S, Fauser F, Puchta H. . (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. , 12704.

https://doi.org/10.1111/tpj.12704

Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J Xi JJ, Qiu JL. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. . Nat Biotechnol , 31 :686-688.

https://doi.org/10.1038/nbt.2650

Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods , 11:399-402.

https://doi.org/10.1038/nmeth.2857

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature , 2014;507:62-7.

https://doi.org/10.1038/nature13011

Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I. (2014;). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol , 55:475-81.

https://doi.org/10.1093/pcp/pcu014

Thakore, P.I., D'ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K.. (2015). Highly specific epigenome editing by CRISPR- Cas9 repressors for silencing of distal regulatory elements. Nat. Methods , 12, 1143-1149.

https://doi.org/10.1038/nmeth.3630

Unniyampurath U, Pilankatta R, Krishnan MN. . (2016). RNA interference in the age of CRISPR: Will CRISPR interfere with RNAI? . Int J Mol Sci , 17:291; PMID:26927085; https://doi.org/10.3390/ijms17030291. Upadhyay SK, Kumar J, Alok A, Tuli R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda). , 3:2233-8.

https://doi.org/10.3390/ijms17030291

Voytas DF, Gao C. (2014). Precision genome engineering and agriculture oppurtunities and regulatory challenges. PLoS Biol , 12:e1001877.

https://doi.org/10.1371/journal.pbio.1001877

Waldrip ZJ, Byrum SD, Storey AJ. (2014). A CRISPR-based approach for proteomic analysis of a single genomic locus. . Epigenetics , 9,1207-1211.

https://doi.org/10.4161/epi.29919

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F Jaenisch R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. . Cell , 153, 910-918.

https://doi.org/10.1016/j.cell.2013.04.025

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L:. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol , 32:947-951.

https://doi.org/10.1038/nbt.2969

Wang,F.,Wang,C.,Liu,P.,Lei,C.,Hao,W.,Gao,Y., Liu,Y.-G.,andZhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS one , 11 :e0154027.

https://doi.org/10.1371/journal.pone.0154027

Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B. ( 2014). CasOT: a genome- wide Cas9/gRNA off-target searching tool. Bioinformatics , 30:1180-1182.

https://doi.org/10.1093/bioinformatics/btt764

Xie K, Yang Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. . Mol Plant. , 6:19-83.

https://doi.org/10.1093/mp/sst119

Xie K, Yang Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6: , 1975-1983.

https://doi.org/10.1093/mp/sst119

Xie K, Zhang J, Yang Y. (2014). Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops. Molecular Plant , 7, 923- 926.

https://doi.org/10.1093/mp/ssu009

Xie K, Zhang J, Yang Y. . (2014). Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9 mediated genome editing in model plants and major crops. Mol Plant , 7:923-6.

https://doi.org/10.1093/mp/ssu009

Xie, K., Minkenberg, B., Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA- processing system. . Proc. Natl. Acad. Sci. U. S. A. , 112, 3570-3575.

https://doi.org/10.1073/pnas.1420294112

Xuan Liu, Surui Wu, Jiao Xu, Chun Suin, Jianhe Wei. (2017). A p p l i c a t i o n of C R I S P R / C a s 9 i n p l a n t b i o l o g y. Acta Pharmaceutica Sinica B , 01.002.

Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. . (2015). CRISPR/Cas9- mediated viral interference in plants. Genome Biol , 16:238; PMID:26556628; https://doi. org/10.1186/s13059-015- 0799-6.

https://doi.org/10.1186/s13059-015-0799-6

Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM. (2016). Engineering plant immunity: Using CRISPR/Cas9 to generate virus resistance. Front Plant Sci , 7:1-10; PMID:26858731.

https://doi.org/10.3389/fpls.2016.01673

Zhang D, Li Z, Li J-F. . (2015). Genome editing: New antiviral weapon for plants. . Nat Plants , 1:15146; https://doi.

https://doi.org/10.1166/gge.2015.1014

https://doi.org/10.1166/gge.2015.1007

Zhang H, Z. J. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. , 12:797-807.

https://doi.org/10.1111/pbi.12200

Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L Zhang H, Xu N. (2014,). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J , 12:797-807.

https://doi.org/10.1111/pbi.12200

Zhang, K., Raboanatahiry, N., Zhu, B., and Li, M. . (2017). Progress in genome editing technology and its application in plants. Front. Plant Sci. , 8:177. doi: 10.3389/fpls.2017.00177.

https://doi.org/10.3389/fpls.2017.00177

Zhao, Y., Zhang, C., Liu, W., Gao, W., Liu, C., Song, G., Li, W.X., Mao.L., Chen, B., Xu, Y. (2016). An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep. , 6:23890.

https://doi.org/10.1038/srep23890

Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res , 42:10903-10914.

https://doi.org/10.1093/nar/gku806

Downloads

Published

30-06-2018

How to Cite

Sunusi, M., Lurwanu, Y., Halidu, J., & Musa, H. (2018). Crispr Cas System in Plant Genome Editing a New Opportunity in Agriculture to Boost Crop Yield. UMYU Journal of Microbiology Research (UJMR), 3(1), 104–114. https://doi.org/10.47430/ujmr.1831.017