Crispr Cas System in Plant Genome Editing a New Opportunity in Agriculture to Boost Crop Yield
DOI:
https://doi.org/10.47430/ujmr.1831.017Keywords:
Crispr-Cas9, Precise genome engineering, Crop improvement, Crop Yield, Gene editing technologyAbstract
Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 technology evolved from a type II bacterial immune system develop in 2013 This system employs RNA-guided nuclease, CRISPR associated (Cas9) to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. The system has the ability to detect specific sequences of letters within the genetic code and to cut DNA at a specific point. Simultaneously with other sequence-specific nucleases, CRISPR/ Cas9 have already breach the boundaries and made genetic engineering much more versatile, efficient and easy also it has been reported to have increased rice grain yield up to 25-30 %, and increased tomato fruits size, branching architecture, and overall plant shape. CRISPR/ Cas also mediated virus resistance in many agricultural crops. In this article, we reviewed the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also described the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.
Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; Cas, CRISPR associated; crRNA, CRISPR RNA; tracrRNA, trans-activating crRNA; PAM, protospacer adjacent motif; sgRNA, single guide RNA; gRNA, guide RNA; ssODN, single-stranded DNA oligonucleotide; DSB, double-strand break; NHEJ, non-homologous end joining; HDR, homology directed repair, CRISPRi ,CRISPR interference
Downloads
References
Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants , 1:15145; https://doi.org/10.1038/nplants.2015. 145.
https://doi.org/10.1038/nplants.2015.145
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. . (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science , 315, 1709-1712.
https://doi.org/10.1126/science.1138140
Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J. . (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. . Science , 321, 960-964.
https://doi.org/10.1126/science.1159689
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., . (2013). Multiplex genome engineering using CRISPR/Cas systems. Science , 339, 819-823.
https://doi.org/10.1126/science.1231143
Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. . (2012). (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Pnas , 109, E2579-E2586.
https://doi.org/10.1073/pnas.1208507109
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A:. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol , 169- 5429-5433.
https://doi.org/10.1128/jb.169.12.5429-5433.1987
Jian-Kang Zhu. (2018). CRISPR-edited rice plants produce major boost in grain yield. pnas .
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA- guided DNA endonuclease in adaptive bacterial immunity. . Science , 337, 816-821.
https://doi.org/10.1126/science.1225829
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE Church GM. ( 2013). RNA-guided human genome engineering via Cas9. Science , 339:823- 826.
https://doi.org/10.1126/science.1232033
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. . (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity inEscherichia coli. . Nucl. Acids Res. , 39, gkr606-gkr9282.
https://doi.org/10.1093/nar/gkr606
Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R. ( 2013). Trait stacking via targeted genome editing. Plant Biotechnol J. , 11:1126-34.
https://doi.org/10.1111/pbi.12107
Andolfo G, Iovieno P, Frusciante L, Ercolano MR. (2016). Genome-Editing Technologies for enhancing plant disease resistance. Front Plant Sci , 7:1813; PMID:27990151.
https://doi.org/10.3389/fpls.2016.01813
Bikard D, M. L. (2013). Control of gene expression by CRISPR-Cas systems. F1000Prime Rep. , ;5:47.
https://doi.org/10.12703/P5-47
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. (2005;). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. , 151:2551-61.
https://doi.org/10.1099/mic.0.28048-0
Brooks C, Nekrasov V, Lippman ZB, Van Eck J. . (2014;). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR- Associated9 System. . Plant Physiol. , 166:1292-7.
https://doi.org/10.1104/pp.114.247577
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW. ( 2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. , 155:1479-91.
https://doi.org/10.1016/j.cell.2013.12.001
Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiplegenomic loci. Nucleic Acids Res, 44, e75.
https://doi.org/10.1093/nar/gkv1533
Daniel Rodríguez-Leal, Zachary H. Lemmon, Jarrett Man, Madelaine E. Bartlett, Zachary B. Lippman. . ( 2017). Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell .
https://doi.org/10.1016/j.cell.2017.08.030
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. , 471:602-7.
https://doi.org/10.1038/nature09886
F. Zhang, Y. Wen, and X. Guo. (2014). CRISPR/Cas9 for genome edit ing: Progress, implications and challenges. Human Molecular genetics , vol. 23, no. 1, pp. R40-R46.
https://doi.org/10.1093/hmg/ddu125
Fauser F, Roth N, Pacher M, Ilg G, Sa' nchez- Ferna' ndez R Biesgen C, Puchta H:. (2012). In planta gene targeting. Proc Natl Acad Sci U S A , 109:7535-7540.
https://doi.org/10.1073/pnas.1202191109
Fauser F, Schiml S, Puchta H. (. 2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. . Plant J , 79:348-59.
https://doi.org/10.1111/tpj.12554
Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P.(2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. , 23:1229-32.
https://doi.org/10.1038/cr.2013.114
Gaj, T., Gersbach, C.A. (2013). ZFN, TALEN,
and CRISPR/Cas-based methods for genome engineering. Trends Biotechno, 31, 397-405.
https://doi.org/10.1016/j.tibtech.2013.04.004
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. (2015). CRISPR/Cas9-
mediated targeted mutagenesis in Nicotiana tabacum. . Plant Mol Biol , 87:99-110.
https://doi.org/10.1007/s11103-014-0263-0
Gao, Y., and Zhao, Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. , 56:343-349.
https://doi.org/10.1111/jipb.12152
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P. ( 2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. , 468:67-71.
https://doi.org/10.1038/nature09523
Giovannetti, M., Sbrana, C., Turrini, A. (2005). The impact of genetically modified crops on soil microbial communities. Riv. Biol. Biol. Forum , 98, 393-417.
Hale, C. Z. (2009). RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell , 139, 945-956.
https://doi.org/10.1016/j.cell.2009.07.040
hang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L. . (2016). Effiient and transgene-free genome editing in wheat hrough transient expression of CRISPR/Cas9 DNA or RNA. Nat comun , 7, 12617.
https://doi.org/10.1038/ncomms12617
Horvath P, Barrangou R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, , 167-170.
https://doi.org/10.1126/science.1179555
Hsu PD, Lander ES, Zhang F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell , 157:1262-1278.
https://doi.org/10.1016/j.cell.2014.05.010
Hu, J., Lei, Y., Wong, W.K., Liu, S., Lee, K.C. .(2014). Direct activation of human and mouse genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. , 42, 4375-4390.
https://doi.org/10.1093/nar/gku109
Hwang, W.Y. . (2013). Effiient genome editing in zebrafih using a CRISPR-Cas System. Nat. Biotechnol. , 31, 227-229 .
https://doi.org/10.1038/nbt.2501
J. F. Li, J. E. Norville, and J. Aachi, J. E. Norville, and J. Aach. (2013). Multiplex and homologous recombination- mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 . Nature Biotechnolog , vol. 31, no. 8, pp. 688-691.
https://doi.org/10.1038/nbt.2654
Ji X, Zhang H, Zhang Y, Wang Y, Gao C. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants . nplants , 1:15144; PMID:27251395;
https://doi.org/10.1038/nplants.2015.144
https://doi.org/10.1038/nplants. 2015.144.
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res , 41-188.
https://doi.org/10.1093/nar/gkt780
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. . science ,;337:816-21.
https://doi.org/10.1126/science.1225829
Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J,. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidospis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol , 31:688-691.
https://doi.org/10.1038/nbt.2654
Li Y, Lin Z, Huang C, Zhang Y, Wang Z. (2015). Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering, 31: 13-21.
https://doi.org/10.1016/j.ymben.2015.06.006
Liang Z, Zhang K, Chen K, Gao C. . ( 2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. , 41:63-8.
https://doi.org/10.1016/j.jgg.2013.12.001
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant , 8,1274- 1284 .
https://doi.org/10.1016/j.molp.2015.04.007
Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., Koonin, E.V. . (2006). (2006). A putative RNA-interference- based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct , 1:7.
https://doi.org/10.1186/1745-6150-1-7
Marraffini, L. a. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322, 1843-1845.
https://doi.org/10.1126/science.1165771
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X. ( 2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res , 23:1233-6.
https://doi.org/10.1038/cr.2013.123
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. . (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. , 60:174-82.
https://doi.org/10.1007/s00239-004-0046-3
Mojica, F.J.M., D ez-Villase or, C.S., Garc a- Mart nez, J.S., and Soria, E. . (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J Mol Evol , 60,174-182.
https://doi.org/10.1007/s00239-004-0046-3
Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA- guided endonuclease. Nat Biotechnol , 31 :691-693.
https://doi.org/10.1038/nbt.2655
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. , 31:839-43.
https://doi.org/10.1038/nbt.2673
Pattanayak V, Lin S, Guilinger JP. (2013). High- throughput profiing of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specifiity. Nature Biotechnology , 31, 839-843.
https://doi.org/10.1038/nbt.2673
Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A. (2015). RNA-guided transcriptional regulationin planta via synthetic dcas9 based- transcription factors. Plant Biotechnol J 13: 578-589. PlantBiotechnol J , 13: 578-589.
https://doi.org/10.1111/pbi.12284
Pourcel C, Salvignol G, Vergnaud G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. . Microbiology , 151, 653-663.
https://doi.org/10.1099/mic.0.27437-0
Puchta H, Fauser F. (2014). Synthetic nucleases for genome engineering in plants:prospects for a bright future. Plant J Cell Mol Biol , 78:727-741.
https://doi.org/10.1111/tpj.12338
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP,Lim WA. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specifi control of gene expression. . Cell , 1173-1183.
https://doi.org/10.1016/j.cell.2013.02.022
Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD,Reyon D, Joung JK, Voytas DF. (2013). Targeted deletion and inversionof tandemly arrayed genes in Arabidopsis thaliana using zincfinger nucleases. G3 (Bethesda, Md , 3:1707- 1715. R. Jansen, J.D. Embden, W. Gaastra, L.M. Schouls. (2002). Identification of genes that are associated with DNA repeats in prokaryotes,. Mol. Microbiol. , 1565- 1575.
https://doi.org/10.1534/g3.113.006270
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol , 166:455-69.
https://doi.org/10.1104/pp.114.239392
Roukos, V., Voss, T.C., Schmidt, C.K., Lee, S., Wangsa, D., Misteli, T. (2013). Spatial dynamics of chromosome translocations in living cells. Science , 341, 660-664.
https://doi.org/10.1126/science.1237150
Rusk N. (2014). CRISPRs and epigenome editing. Nature Methods , 11, 28.
https://doi.org/10.1038/nmeth.2775
Schiml S, Fauser F, Puchta H. . (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. , 12704.
https://doi.org/10.1111/tpj.12704
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J Xi JJ, Qiu JL. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. . Nat Biotechnol , 31 :686-688.
https://doi.org/10.1038/nbt.2650
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods , 11:399-402.
https://doi.org/10.1038/nmeth.2857
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature , 2014;507:62-7.
https://doi.org/10.1038/nature13011
Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I. (2014;). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol , 55:475-81.
https://doi.org/10.1093/pcp/pcu014
Thakore, P.I., D'ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K.. (2015). Highly specific epigenome editing by CRISPR- Cas9 repressors for silencing of distal regulatory elements. Nat. Methods , 12, 1143-1149.
https://doi.org/10.1038/nmeth.3630
Unniyampurath U, Pilankatta R, Krishnan MN. . (2016). RNA interference in the age of CRISPR: Will CRISPR interfere with RNAI? . Int J Mol Sci , 17:291; PMID:26927085; https://doi.org/10.3390/ijms17030291. Upadhyay SK, Kumar J, Alok A, Tuli R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda). , 3:2233-8.
https://doi.org/10.3390/ijms17030291
Voytas DF, Gao C. (2014). Precision genome engineering and agriculture oppurtunities and regulatory challenges. PLoS Biol , 12:e1001877.
https://doi.org/10.1371/journal.pbio.1001877
Waldrip ZJ, Byrum SD, Storey AJ. (2014). A CRISPR-based approach for proteomic analysis of a single genomic locus. . Epigenetics , 9,1207-1211.
https://doi.org/10.4161/epi.29919
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F Jaenisch R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. . Cell , 153, 910-918.
https://doi.org/10.1016/j.cell.2013.04.025
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L:. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol , 32:947-951.
https://doi.org/10.1038/nbt.2969
Wang,F.,Wang,C.,Liu,P.,Lei,C.,Hao,W.,Gao,Y., Liu,Y.-G.,andZhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS one , 11 :e0154027.
https://doi.org/10.1371/journal.pone.0154027
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B. ( 2014). CasOT: a genome- wide Cas9/gRNA off-target searching tool. Bioinformatics , 30:1180-1182.
https://doi.org/10.1093/bioinformatics/btt764
Xie K, Yang Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. . Mol Plant. , 6:19-83.
https://doi.org/10.1093/mp/sst119
Xie K, Yang Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6: , 1975-1983.
https://doi.org/10.1093/mp/sst119
Xie K, Zhang J, Yang Y. (2014). Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops. Molecular Plant , 7, 923- 926.
https://doi.org/10.1093/mp/ssu009
Xie K, Zhang J, Yang Y. . (2014). Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9 mediated genome editing in model plants and major crops. Mol Plant , 7:923-6.
https://doi.org/10.1093/mp/ssu009
Xie, K., Minkenberg, B., Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA- processing system. . Proc. Natl. Acad. Sci. U. S. A. , 112, 3570-3575.
https://doi.org/10.1073/pnas.1420294112
Xuan Liu, Surui Wu, Jiao Xu, Chun Suin, Jianhe Wei. (2017). A p p l i c a t i o n of C R I S P R / C a s 9 i n p l a n t b i o l o g y. Acta Pharmaceutica Sinica B , 01.002.
Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. . (2015). CRISPR/Cas9- mediated viral interference in plants. Genome Biol , 16:238; PMID:26556628; https://doi. org/10.1186/s13059-015- 0799-6.
https://doi.org/10.1186/s13059-015-0799-6
Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM. (2016). Engineering plant immunity: Using CRISPR/Cas9 to generate virus resistance. Front Plant Sci , 7:1-10; PMID:26858731.
https://doi.org/10.3389/fpls.2016.01673
Zhang D, Li Z, Li J-F. . (2015). Genome editing: New antiviral weapon for plants. . Nat Plants , 1:15146; https://doi.
https://doi.org/10.1166/gge.2015.1014
https://doi.org/10.1166/gge.2015.1007
Zhang H, Z. J. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. , 12:797-807.
https://doi.org/10.1111/pbi.12200
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L Zhang H, Xu N. (2014,). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J , 12:797-807.
https://doi.org/10.1111/pbi.12200
Zhang, K., Raboanatahiry, N., Zhu, B., and Li, M. . (2017). Progress in genome editing technology and its application in plants. Front. Plant Sci. , 8:177. doi: 10.3389/fpls.2017.00177.
https://doi.org/10.3389/fpls.2017.00177
Zhao, Y., Zhang, C., Liu, W., Gao, W., Liu, C., Song, G., Li, W.X., Mao.L., Chen, B., Xu, Y. (2016). An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep. , 6:23890.
https://doi.org/10.1038/srep23890
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res , 42:10903-10914.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Journal of Microbiology Research (UJMR)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.