Systematic Intrinsic Biodegradation Studies of Crude Oil Contaminated Soil of Bdere Community in South-South, Nigeria

Authors

  • Ime E Ndekhedehe Department of Biochemistry, University of Uyo, Uyo, Nigeria
  • Solomon E Shaibu Department of Chemistry, University of Uyo, Uyo, Nigeria. https://orcid.org/0000-0002-5845-4238
  • Itoro E Udo Department of Chemistry, University of Uyo, Uyo, Nigeria
  • Nathaniel S Essien Department of Chemistry, University of Uyo, Uyo, Nigeria

DOI:

https://doi.org/10.47430/ujmr.2382.006

Keywords:

Biodegradation, Crude oil, Microorganism, gas chromatography-mass spectrometry (GC-MS), total petroleum hydrocarbon (TPH)

Abstract

Crude oil pollution is a perennial environmental menace that has bedevilled the South-South ecosystem of Nigeria. This study was aimed at using gas chromatography-mass spectrometry (GC-MS) technique to investigate the biodegradation capabilities of nine bacterial cultures on crude oil residues in Bdere area in South-South, Nigeria. These microorganisms include Pseudomonas aeruginosa, Bacillus subtilis, Bacillus cereus, Micrococcus spp, Pseudomonas putida, Clostridium spp, Bacillus spp, Streptococcus spp, and Serratia spp. The results from the microbial-degraded samples were compared with an abiotic control. The findings reveal that the total petroleum hydrocarbon (TPH) in the microbial-treated samples was significantly attenuated compared to the control, confirming the microrganism's ability to degrade crude oil components. The primary degradation pathway involved biological oxidation of the aliphatic hydrocarbons, transforming them to primary alcohols, aldehydes, and fatty acid derivatives. Degradation was also observed across a wide range of short and long-chain alkanes, aromatic hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs). However, some resistant compounds persisted, and certain degradation products inhibited the rate of further biodegradation. The generation of new metabolites and intermediates confirmed the effective microbial remediation. These findings expand our understanding of microbial degradation of hydrocarbons, offering potential strategies for environmental remediation of oil-contaminated sites.

Downloads

Download data is not yet available.

References

Adebayo, G. B., Balogun, B. B., Shaibu, S. E., Jamiu, W., Etim, E. U., Oleh F., Efiong, N. E. and Ogboo B. S. (2019). Comparative study on the adsorption capacity and kinetics of xylene onto rice husk and cassava peel activated carbon, 11(11); 8282-8288.

Arora, S., & Kumar, G. (2018). Journal of Plant Physiology, 7(1): 1445-1450.

Arulazhagan, P., and Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar. Pollut. Bull. 58, 256–262. doi: 10.1016/j.marpolbul.2008.09.017

Atlas, R. M., & Hazen, T. C. (2011). Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environmental Science & Technology, 45(16), 6709–6715. https://doi.org/10.1021/es2013227

Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative Bioremediation of Soils Contaminated with Diesel Oil by Natural Attenuation, Biostimulation and Bioaugmentation. Bioresource Technology, 96(9), 1049–1055. https://doi.org/10.1016/j.biortech.2004.09.008

Coon, M. J. (2005). Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem. Biophys. Res. Commun. 338, 378–385. doi: 10.1016/j.bbrc.2005.08.169

Das, N., & Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810

Enin, G. N., Shaibu, S. E., Ujah, G. A., Ibu, R. O., and Inangha, P. G. (2021). Phytochemical and Nutritive Composition of Uvariachamae P. Beauv. Leaves, Stem Bark and Root Bark. ChemSearch Journal, 12(1): 9-14.

Francke, W., & Schulz, S. (1999). Pheromones. Comprehensive Natural Products Chemistry, 197-261. https://doi.org/10.1016/B978-0-08-091283-7.00052-7

Francke, W., & Schulz, S. (2010). Pheromones of Terrestrial Invertebrates. Comprehensive Natural Products II, 153-223. https://doi.org/10.1016/B978-008045382-8.00095-2

Gries, G., Schaefer, P. W., Gries, R., & Mori, K. (2002). 2-Methyl-(Z)-7-Octadecene: Sex Pheromone of Allopatric Lymantria lucescens and L. serva. Journal of Chemical Ecology, 28, 469-478. https://doi.org/10.1023/A:1014579725967

Guo, C. L., Zhou, H. W., Wong, Y. S., and Tam, N. F. Y. (2005). Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar. Pollut. Bull. 51, 1054–1061. doi: 10.1016/j.marpolbul.2005.02.012

Harayama, S., Kasai, Y., & Hara, A. (2004). Microbial Communities in Oil-Contaminated Seawater. Current Opinion in Biotechnology, 15(3), 205–214. https://doi.org/10.1016/j.copbio.2004.04.002

Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Journal of Hazardous Materials, 169(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137

Hassanshahian, M. (2014). The Effects of Water Pollution on the Bacterial Growth and Activity, and Biodiversity in the Persian Gulf and the Oman Sea. International Journal of Advanced Biological and Biomedical Research, 2(5), 1414-1428.

Kumari, N., Menghani, E., & Mithal, R. (2019). Bioactive compounds characterization and antibacterial potentials of actinomycetes isolated from rhizospheric soil. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1117-1123.

Malik, Z. A., and Ahmed, S. (2012). Degradation of petroleum hydrocarbons by oil fieldisolated bacterial consortium. Afr. J. Biotechnol. 11, 650–658. doi: 10.5897/AJB11.036

Matthew, N. B., Augustine, A. U., Shaibu, S. E., Akpomie, K. G., Etim, E. U., Efiong, N. E., & Oleh, F. (2019). Spectroscopic Evaluation of Nitrate and Nitrite Concentrations in Selected Fruits and Vegetables. International Journal of Scientific Engineering and Science, 3(9), 32-35.

Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation Approaches for Organic Pollutants: A Critical Perspective. Environment International, 37(8), 1362–1375. https://doi.org/10.1016/j.envint.2011.06.003

Miller, M. G., & Brown DuTeaux, S. (2005). Reproductive System, Male. Encyclopedia of Toxicology (Second Edition), 650-661. https://doi.org/10.1016/B0-12-369400-0/00839-5

Sangodare, R. S. A., Okibe, P. O., Mohammed, M., Jajere, M. U., Abubakar, A., Aribido, O. S., & Kolo, M. T. (2017). Chemical Investigation ff Parkia biglobosa Fruit Hull Using GC-MS. American Journal of Research Communication, 5(2), 59-65.

Seo, J. S., Keum, Y. S., and Li, Q. X. (2009). Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health 6, 278–309. doi: 10.3390/ijerph6010278

Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Ayanda, O. S. (2014). A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials, 7(6), 4493–4507.

Shaibu, S. E., Inam, E. J., Moses, E. A. (2022). Biogenic Silver Kaolinite Nanocomposite for the Sequestration of Lead and Cadmium in Simulated Produced Water. Journal of Material and Environmental Sustainability Research, 1(2): 13 – 25.

Singh, S. N., Kumari, B., and Mishra, S. (2012). “Microbial degradation of alkanes,” in Microbial Degradation of Xenobiotics, ed. S. N. Singh (Berlin: Springer), 439–469. doi: 10.1007/978-3-642-23789-8_17

Subramaniam, Yogeswari & Ramalakshmi, Subbiah & Neelavathy, R & Johnpaul, Muthumary. (2012). Identification and Comparative Studies of Different Volatile Fractions from Monochaetia kansensis by GCMS. The Global Journal of Pharmacology. 6. 65-71.

Techtmann, S. M., & Hazen, T. C. (2016). Metagenomic Applications in Environmental Monitoring and Bioremediation. Journal of Industrial Microbiology & Biotechnology, 43(10), 1345–1354. https://doi.org/10.1007/s10295-016-1813-7

Thakore, K., & Mehendale, H. (2014). Dibenzofuran. Encyclopedia of Toxicology (Third Edition), 67-69. https://doi.org/10.1016/B978-0-12-386454-3.00304-3

Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. C. R. (2011). Bioaugmentation and Biostimulation Strategies to Improve the Effectiveness of Bioremediation Processes. Biodegradation, 22(4), 231–241. https://doi.org/10.1007/s10532-010-9394-4

UdoUSoro, I. I., Umoren, I. U., Izuagie, J. M., Ikpo, C. U., Ngeri, S. F., & Shaibu, E. S. (2015). Soil Invertebrates as Bio-Monitors of Toxic Metals Pollution in Impacted Soils. Current World Environment, 10(2), 367.

Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent Advances in Petroleum Microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549. https://doi.org/10.1128/MMBR.67.4.503-549.2003

Vanitha, V., Vijayakumar, S., Nilavukkarasi, M., Punitha, V., Vidhya, E., & Praseetha, P. (2020). Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products, 154, 112748. https://doi.org/10.1016/j.indcrop.2020.112748

Vidali, M. (2001). Bioremediation. An overview. Pure Appl. Chem. 73, 1163–1172. doi: 10.1351/pac200173071163

Downloads

Published

30-12-2023

How to Cite

Ndekhedehe, I. E., Shaibu, S. E., Udo, I. E., & Essien , N. S. (2023). Systematic Intrinsic Biodegradation Studies of Crude Oil Contaminated Soil of Bdere Community in South-South, Nigeria. UMYU Journal of Microbiology Research (UJMR), 8(2), 40–55. https://doi.org/10.47430/ujmr.2382.006

Most read articles by the same author(s)