Nuclear 80S Ribosomes Present Across the Stages of Cell Cycle in Drosophila Melanogaster Cells

Authors

  • Akilu Abdullahi Department of Biochemistry, Umaru Musa Yar’adua University, Katsina. https://orcid.org/0000-0002-1536-8217
  • Saverio Brogna Univertity of birmingam, Edgbaston B15 2TT, United Kingdom.

DOI:

https://doi.org/10.47430/ujmr.2382.003

Keywords:

Cell cycle, ribosomes, translation

Abstract

Nuclear translation has been a subject of controversy between scientists for over 5 decades. Despite the existence of evidence to the contrary, most biologists agree that translation exclusively takes place in the cytoplasm of eukaryotes.  In recent years, more evidences are being presented that disprove this theory. Here we employed the Ribo-BiFC technique which can detect assembled, and potentially translating, ribosomes invivo and studied nuclear 80S assembly and translation at all the stages of cell cycle in Drosophila S2 cells. The results obtained suggest that 80S ribosomes are present in the nucleus particularly within the nucleolus across all the cell cycle stages in Drosophila S2 cells that were visualised. The signal observed is more apparent in S-phase. This investigation supports the many other previous findings that nuclear translation may occur in eukaryotic organisms.

Downloads

Download data is not yet available.

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular biology of the cell, 5th edn. Garland Science. New York. https://doi.org/10.1201/9780203833445

Al-Jubran, K., Wen, J., Abdullahi, A., Roy Chaudhury, S., Li, M., Ramanathan, P., Matina, A., De, S., Piechocki, K., Rugjee, K. N., & Brogna, S. (2013). Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. RNA (New York, N.Y.), 19(12), 1669-1683. https://doi.org/10.1261/rna.038356.113

Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Á resolution. Science, 289, 905-920. https://doi.org/10.1126/science.289.5481.905

Barna, M. 2013. Ribosomes take control. Proc Natl Acad Sci U S A, 110, 9-10. https://doi.org/10.1073/pnas.1218764110

Ben-shem, A., Jenner, L., Yusupova, G. & Yusupov, M. 2010. Crystal structure of the eukaryotic ribosome. Science, 330, 1203-9. https://doi.org/10.1126/science.1194294

Beringer, M. & Rodnina, M. 2007. The ribosomal peptidyl transferase. Mol Cell 26(3), 311-321. https://doi.org/10.1016/j.molcel.2007.03.015

Bischof, J., Maeda, R., Hediger, M., Karch, F. & Basler, K. 2007. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA, 104, 3312 - 3317. https://doi.org/10.1073/pnas.0611511104

Brodersen, D. E., Clemons, W. M., JR., Carter, A. P., Wimberly, B. T. & Ramakrishman, V. 2002. Crytal structure of 30S ribosomal subunit fro Thermus thermophilus: structure of proteins and their interactions with 16 S RNA. J. Mol. Biol, 316, 725-768. https://doi.org/10.1006/jmbi.2001.5359

Brogna, S., Sato, T.-A., & Rosbash, M. (2002). Ribosome components are associated with sites of transcription. Molecular Cell, 10(4), 93-104. https://doi.org/10.1016/S1097-2765(02)00565-8

David, A., Dolan, B. P., Hickman, H. D., Knowlton, J. J., Clavarino, G., Pierre, P., Bennink, J. R., & Yewdell, J. W. (2012). Nuclear translation visualized by ribosome-bound nascent chain puromycylation. The Journal of Cell Biology, 197(1), 45-57. https://doi.org/10.1083/jcb.201112145

Doudna, J. A. & Rath, V. L. 2002. Structure and function of the eukaryotic ribosome: the next frontier. Cell 109(2), 153-156. https://doi.org/10.1016/S0092-8674(02)00725-0

Holcik, M. & Sonenberg, N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol, 6, 318-327. https://doi.org/10.1038/nrm1618

Iborra, F. J., Jackson, D. A. & Cook, P. R. 2001. Coupled transcription and translation within nuclei of mammalian cells. Science, 293, 1139-42. https://doi.org/10.1126/science.1061216

Ivan Kisly and Tiina Tamm 2023. Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Computational and Structural Biotechnology Journal 21 (2023) 1249-1261. https://doi.org/10.1016/j.csbj.2023.01.037

Lee, M.-C., Toh, L.-L., Yaw, L.-P. & Luo, Y. 2010. Drosophila Octamer Elements and Pdm-1 Dictate the Coordinated Transcription of Core Histone Genes. Journal of Biological Chemistry, 285, 9041-9053. https://doi.org/10.1074/jbc.M109.075358

Maguire, B. A., & Zimmermann, R. A. (2001). The ribosome in focus. Cell, 104(6), 813-816. https://doi.org/10.1016/s0092-8674(01)00278-1

McLeod, T., Abdullahi, A., Li, M., & Brogna, S. (2014). Recent studies implicate the nucleolus as the major site of nuclear translation. Biochemical Society Transactions, 42(4), 1224-1228. https://doi.org/10.1042/BST20140062

Muhlemann, O., Mock-Casagrande, C. S., Wang, J., Li, S., Custodio, N., Carmon-Fonseca, M., Wilkinson, M. F. & Moore, M. J. 2001. Precursor RNAs harboring nonsense codonsaccumulate near the site of transcription. Mol Cell 8, 33-43. https://doi.org/10.1016/S1097-2765(01)00288-X

Moore, M. J. & Proudfoot, N. J. 2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688-700. https://doi.org/10.1016/j.cell.2009.02.001

Palazzo, A. F. & Akef, A. 2012. Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819, 566-577. https://doi.org/10.1016/j.bbagrm.2011.12.012

Pearce, A. & Humphrey, T. 2001. Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol, 11(10), 426-33. https://doi.org/10.1016/S0962-8924(01)02119-5

Ramakrishman, V. 2002. Ribosome structure and the mechanism of translation. Cell, 108, 557-572. https://doi.org/10.1016/S0092-8674(02)00619-0

Ramanathan, P., Guo, J., Whitehead, R. N. & Brogna, S. 2008. The intergenic spacer of the Drosophila Adh-Adhr dicistronic mRNA stimulates internal translation initiation. RNA Biol, 5, 149-56. https://doi.org/10.4161/rna.5.3.6676

Yi, X., Lemstra, W., Vos, M. J., Shang, Y., Kampinga, H. H., Su, T. T. & Sibon, O. C. 2008. A long-term flow cytometry assay to analyze the role of specific genes of Drosophila melanogaster S2 cells in surviving genotoxic stress. Cytometry A, 73, 637-42. https://doi.org/10.1002/cyto.a.20579

Downloads

Published

30-08-2023

How to Cite

Akilu Abdullahi, & Saverio Brogna. (2023). Nuclear 80S Ribosomes Present Across the Stages of Cell Cycle in Drosophila Melanogaster Cells. UMYU Journal of Microbiology Research (UJMR), 8(2), 15–23. https://doi.org/10.47430/ujmr.2382.003