Molecular Detection of Virulence Genes in Escherichia coli and Salmonella enterica Isolated from Minimally Processed Foods Sold within Kaduna Metropolis
DOI:
https://doi.org/10.47430/ujmr.2271.012Keywords:
E. coli, virulence gene, minimally processed foods, Salmonella entericaAbstract
Minimally processed foods are widely consumed in Kaduna, Nigeria and the world at large. However, poor quality control during their processing make them prone to contamination by enteropathogens known to possess multiple virulence genes, possibly causing morbidities and mortalities. Investigating the prevalence and virulence genes of food-borne bacteria is therefore paramount. This study was aimed at detecting virulence genes in enteropathogenic bacteria associated with minimally processed foods sold within Kaduna metropolis. Samples of sliced watermelons, peeled sugarcanes, peeled and sliced pineapples and unshelled coconuts (n=140) were collected from Kaduna North, Kaduna South and Igabi LGAs. Upon enrichment, samples were inoculated onto Eosin-Methylene Blue (EMB) and Cefixime-Tellurite-Sorbitol MacConkey (CT-SMAC) agar and incubated for 18 hours at 35oC. Isolates were identified using MicrobactTM 24E Gram Negative Bacteria Identification System for Enterobacteriaceae. Thereafter, E. coli and Salmonella enterica isolates’ DNA was extracted and purified using AccuPrep Genomic DNA Extraction Kit; used as a template for the PCR amplification of the bundle forming pilus (bfpA) and invasion (invA) genes; and then the PCR products were visualised using agarose gel electrophoresis documentation system. The results of the MicrobactTM analyses showed widespread contamination of the samples with E. coli (22 isolates) and Salmonella enterica (3 isolates). There was no statistically significant difference in the bacterial contaminants isolated from the various sampling areas (one-way ANOVA: p = 0.577); similarly, the type of the minimally processed food samples had no influence on the prevalence of E. coli and Salmonella enterica isolates (p = 0.345). PCR result revealed that the invA virulence gene (284bp) was present in one Salmonella enterica isolate. The presence of invA gene in the Salmonella enterica isolate indicated that the isolate is a virulent strain, which can cause food-borne infections. These results indicated the contamination of the minimally processed fruits with enteropathogens, hence, standards of quality control should be enshrined, towards safer foods and enhanced health of the consuming populace.
Downloads
References
Abadias, M., Usall, J., Angehera, M., Soldona C., & Vinas, I. (2008). Microbiological qualities of fresh, minimally processed fruit and vegetables and sprouts from retail establishment. International Journal of Food Microbiology, 123, 121-129.
https://doi.org/10.1016/j.ijfoodmicro.2007.12.013
Adeleye, I. A., Abdulkadir, B., Abdullahi, I., Mujahid, H., Musa, I., Ahmad, M. A., Raubilu, I. A. and Isah, U. (2019). Antimicrobial susceptibility and ESBLs profiles of non-typhoidal Salmonellae from poultry droppings in Katsina and Akoka, Lagos, Nigeria. Bayero Journal of Pure and Applied Sciences, 12(1), 682-690.
Adeshina, G. O., Osugwa, N. O., Okeke, C. E., Joseph, O. E., and Bolaji, R.O. (2009). Prevalence and susceptibility of Salmonella typhi and Salmonella paratyphi in Zaria, Nigeria. International Journal of Research, 3(4): 355-360.
https://doi.org/10.4314/ijhr.v2i4.55436
Altier, C. M. and Lawhon, S. D. (2000). Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infection Immunity Peer-Reviewed Journal, 68, 6790-6797.
https://doi.org/10.1128/IAI.68.12.6790-6797.2000
Ayicicek, H., Ogus, U. and Karci, K. (2006). Determination of total aerobic and indicator Bacteria on some raw eaten vegetables from wholesalers in Ankara, Turkey. International Journal of Hygiene and Environmental Health, 209: 197-201.
https://doi.org/10.1016/j.ijheh.2005.07.006
Bansal, V., Siddiqui, M. W. and Shafiur Rahman, M. D. (2015). Minimally processed foods: Overview. In M. Sidiqui & M. Rahman (Eds), Minimally Processed Foods. Food Engineering Series. Springer Cham.
https://doi.org/10.1007/978-3-319-10677-9_1
Bryan, F. L., Michamie, S. C., Alvarez, P., & Paniagua, A. (1988). Critical control points of street-vended foods in the Dominican Republic. Journal of Food Protection, 51, 373-383.
https://doi.org/10.4315/0362-028X-51.5.373
Carlos, A. M., Renata, B. L., Rafarl, M. C., Ines, R. R. & Geoffrey, C. (2010). A new classification of foods based on the extent of their processing. Artigo Article Cad Saude Publica, 26(11), 2039-2049.
https://doi.org/10.1590/S0102-311X2010001100005
Contreras, C. A., Ochoa, T. J., Lacher, D. W., Debroy, C., Navarro, A., Talledo, M., & Cleary, T. G. (2010). Allelic variability of critical virulence genes (eae, bfpA, and perA) in Perusian Children. Journal of Medical Microbiology, 59, 25-31.
https://doi.org/10.1099/jmm.0.013706-0
Darwin, K. H., & Miller, V. L. (1999). Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clinical Microbiology Reviews, 12, 405-428.
https://doi.org/10.1128/CMR.12.3.405
Denwe, S. D. (2014). Comparative diagnosis of enteric fever and antibiogram of Salmonella isolated from some patients of selected hospitals in Kaduna Metropolis. Unpublished doctoral thesis, Department of Biological Sciences, Nigerian Defence Academy, Kaduna.
FDA - Food and Drug Administration (2013). BAM (Bacteriological Analysis Manual) Chapter 4: Escherichia coli and Coliform Bacteria. https://www.fda.gov/food/laboratory-methods-food/bam-chapter4-enumeration-escherichia-coli-and-coliform-bacteria
Feroz, F., Senjuti, J. D., and Noor, R. (2013). Determination of microbial growth and survival in salad vegetables through in vitro challenge test. International Journal of Food Sciences and Nutrition, 2(6), 312-319.
https://doi.org/10.11648/j.ijnfs.20130206.18
Gilbert, L. C. (2000). The functional food trend: what's next and what America think about eggs. The Journal of the American College of Nutrition, 19, 507S-512S.
https://doi.org/10.1080/07315724.2000.10718973
Haroun, A. A., Magaji, Y., Denwe, S., Muktar, M. D. and Kamaluddeen, K. K. (2017). Antibiotic Resistance level in Bacterial isolates from the Kakuri Industrial Drain in Kaduna, Nigeria. IJRDO - Journal of Biological Sciences, 3(8), 1-11.
Iwalokun, B. A., Gbenle, G. O., Smith, S. I., Ogunledun, A., Akinsinde, K. A., and Omonigbehin, E. A. (2001). Epidemiology of shigellosis in Lagos, Nigeria: trends in antimicrobial resistance. Journal of Health Population and Nutrition, 19, 183-190.
Jay, J. M. (2000). Modern food microbiology. Aspen Food Science Series. Aspen publishers.
https://doi.org/10.1007/978-1-4615-4427-2
Kabir, M., Riko, Y. Y., Abdullahi, B., Kabir, K., Zubairu, U. D., and Hamza, U. A. (2020). Bioburdens of selected ready-to-eat fruits and vegetables in Katsina metropolis, Katsina State, Nigeria. International Journal of Science and Research, 9(9), 108-114.
Kaferstein, F. (2003). Foodborne disease in developing countries: Aetiology, epidemiology and strategies for prevention. International Journal of Environmental Research, 13(Suppl 1), S161-168.
https://doi.org/10.1080/0960312031000102949
Mailafia, S., Nabilah, B., and Olabode, H. O. K. (2021). Phenotypic characterization of Aeromonas hydrophilia isolates in fresh water fishes in FCT using MicrobactTM GNB 24E Identification Kit. Open Access Library Journal, 8, 1-12.
https://doi.org/10.4236/oalib.1107066
Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., Jones, T. F., Fazil, A. and Hoekstra, R. M. (2010). The global burden of non-typhoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50(6), 882-889.
https://doi.org/10.1086/650733
Mensah, P., Owusu-Darko, K., Yeboah-Manu, D., Ablordey, A.and Nkrumah, F.K. (1999). The role of a street food vendor in the transmission of enteric pathogens. Ghana Medical Journal. 33: 19-29.
Mohammed K. (2013). Detection of Virulence Gene (invA) in Salmonella isolated from meat and poultry products. International Journal of Genetics. 3(2): 7-12.
Mohseni, M. (2022). Escherichia coli O157:H7 and its Effects on Human Health. In M. S. Erjavec (Eds.). Escherichia coli. InTech Open. https://www.intechopen.com/online-first/80196
https://doi.org/10.5772/intechopen.101825
Monteiro, C. A., Levy, R. B., Castro, I. R. R., and Cannon, G. (2010). A new classification of foods based on the extent and purpose of their processing. Cadernos de saudepublica, 26(11), 2039-2049.
https://doi.org/10.1590/S0102-311X2010001100005
Musa, O. I., and Akande T. M. (2003). Food hygiene practices of food vendors in Secondary Schools in Ilorin. Nigerian Post Graduate Medical Journal, 10, 192-196.
https://doi.org/10.4103/1117-1936.174154
Nejman-Falenczyk, B., Bloch, S., Januszkiewicz, A., Wegrzyn, A., & Wegrzyn, G. (2015). A simple and rapid procedure for the detection of genes encoding Shiga toxins and other specific DNA sequences. Toxins (Basel), 7(11), 4745-4757.
https://doi.org/10.3390/toxins7114745
Okeke, I. N., Abudu, A. B., and Lamikanra, A. (2001). Microbiological investigation of an outbreak of acute gastroenteritis in Niger State, Nigeria. Clinical Microbiology and Infection, 7, 514-6.
https://doi.org/10.1046/j.1198-743x.2001.00281.x
Oyeye, T. I. and Lum-Nwi, M. E. F. (2008). Bacteriological Quality of some street vended foods in Bayero University campuses Kano, Nigeria. Bacteriological and Environmental Science Journal for the Tropics, 5(4), 239-243.
Posse, B., De Zutter, L., Heyndrickx, M., and Herman, L. (2008). Novel differential and confirmation plating media for Shiga toxin-producing Escherichia coli serotypes O26, O103, O111, O145 and sorbitol positive and -negative O157. FEMS Microbiology Letters, 282(1): 124-131.
https://doi.org/10.1111/j.1574-6968.2008.01121.x
Riko, Y. Y., Abdulkadir, B., and Kabir, M. (2021). Development of a robust model for detecting and classifying multidrug resistance and its evaluation through antibiogram studies on selected gram negative bacteria from Katsina Metropolis, Katsina State, Nigeria. International Journal of Applied Science and Research, 4(3): 291-310.
Seow, J., Agoston, R, Phua, L. and Yuk, H. G. (2011). Microbiological quality of fresh vegetables and fruits sold in Singapore. Food Control, 25: 39-44.
https://doi.org/10.1016/j.foodcont.2011.10.017
Silvia, D. O., Carla, R. R., Geovana, B. M., Maria, I. R., Cardoso, C. W. C. and Andriano, B. (2003). Detection of virulence genes in Salmonella enteritidis isolated from different sources. Brazillian Journal of Microbiology, 34: 123-124.
https://doi.org/10.1590/S1517-83822003000500042
Stoppe, N. d. C., Silva, J. S., Carlos, C., Sato, M. I. Z., Saraiva, A. M., Ottoboni, L. M. M., and Torres, T. T. (2017). Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Frontiers in Microbiology, 8, 2512.
https://doi.org/10.3389/fmicb.2017.02512
Subramanian, K. Selvakkumar, C., Vinaykumar, K. S., Goswami, N., Meenakshisundaram, S., Balakrishnan, A., and Lakshmi, B. S. (2009).Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarium shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. International Journal of Antimicrobial Agents, 33: 244-249.
https://doi.org/10.1016/j.ijantimicag.2008.08.032
Thornbrough, J. M., and Worley, M. J. (2012). A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/ssel controls early extraintestinal dissemination. PLoS One, 7:e45245.
https://doi.org/10.1371/journal.pone.0045245
Todar, K. (2007). Pathogenic E. coli. In Online Textbook of Bacteriology. University of Winconsin- Madison Department of Bacteriology, pp. 11-30.
World Atlas. (2015). Where is Kaduna, Nigeria? https://www.worldatlas.com/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Journal of Microbiology Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.