Optimisation of Polyhydroxy Butyrate Production by Lysinibacillus fusiformis and Metabacillus indicus isolated from Spent Engine-oil Contaminated Soil

Authors

  • Abasiofon E George 1Faculty of Biological Sciences, Department of Microbiology. Akwa Ibom State University Ikot Akpaden, Mkpat Enin L.G.A. Akwa Ibom State.
  • Ukponobong E Antia 1Faculty of Biological Sciences, Department of Microbiology. Akwa Ibom State University Ikot Akpaden, Mkpat Enin L.G.A. Akwa Ibom State. https://orcid.org/0000-0001-9035-5267
  • Adebare J Adeleke 1Faculty of Biological Sciences, Department of Microbiology. Akwa Ibom State University Ikot Akpaden, Mkpat Enin L.G.A. Akwa Ibom State. https://orcid.org/0000-0001-7586-5410
  • Opeyemi K Fatunla Department of Microbiology, University of Uyo, Uyo Akwa Ibom State https://orcid.org/0000-0001-6739-9261

DOI:

https://doi.org/10.47430/ujmr.2382.005

Keywords:

polyhydroxybutyrate (PHB), bacteria, optimization, biodegradable plastics

Abstract

This study isolated bacteria from spent engine oil-contaminated soil and optimized their production of polyhydroxybutyrate (PHB), a biodegradable polymer belonging to the polyesters classes that are of interest as bioderived and biodegradable plastics. Out of 12 bacterial isolates (species of Bacillus, Pseudomonas, Staphylococcus and Lactobacillus) recovered from the spent engine oil contaminated soils, and screened for their capacity to accumulate polyhydroxybutyrate (PHB), only two bacterial isolates (Lysinibacillus fusiformis and Metabacillus indicus), showed significant PHB production. L. fusiformis produced PHB at a concentration of 1.5 g/L, while M. indicus produced PHB at a concentration of 1.0 g/L. Optimal production conditions included a temperature of 35°C, agitation speed of 100 rpm, neutral pH of 7.0, glucose as the carbon source, and peptone as the nitrogen source. Gas chromatography-mass spectrometry confirmed the presence of PHB in the extracted samples, with hexadecanoic acid methyl ester identified as the predominant peak. These findings highlight the potential of bacteria from engine oil-contaminated soil as efficient PHB producers and contribute to the development of sustainable and biodegradable plastics.

Downloads

Download data is not yet available.

References

Akaraonye, E., Keshavarz, T., & Roy, I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. Journal of Chemical Technology and Biotechnology, 85(6), 732-743. https://doi.org/10.1002/jctb.2392

Ali, H., Rastogi, S., & Kumar, A. (2018). Environmental distribution, abundance and activity of the miscellaneous Crenarchaeotal group. Microbial Ecology, 76(3), 556-566.

Bose, S. A., Raja, S., Jeyaram, K., Arockiasamy, S., & Velmurugan, S. (2020). Investigation of fermentation condition for production enhancement of polyhydroxyalkanoate from cheese whey by Pseudomonas sp. Journal of Microbiology, Biotechnology and Food Sciences, 5, 890-898. https://doi.org/10.15414/jmbfs.2020.9.5.890-898

Burdon, K. L., & Stokes, J. C. (1942). Studies of the common aerobic spore-forming Bacilli: I. Staining for fat with Sudan Black B-safranin. Journal of Bacteriology, 43(6), 717-724. https://doi.org/10.1128/jb.43.6.717-724.1942

Chang, Y. K., Hahn, S. K., Kim, B. S., & Chang, H. N. (1994). Optimization of microbial poly (3‐hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 44(2), 256-261. https://doi.org/10.1002/bit.260440215

Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries Part 2. UK: Cambridge University Press, 45-70. https://doi.org/10.1017/CBO9780511543470

Choi, W. I., Park, J. Y., Lee, J. P., Oh, Y. K., Park, Y. C., Kim, J. S., & Lee, J. S. (2013). Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnology for Biofuels, 6, 1-8. https://doi.org/10.1186/1754-6834-6-170

Elshafey, N., Elkashef, A. A., Hamedo, H. A., & Mansour, M. A. (2022). Molecular identification of halophilic microorganisms producing exo-halozymes by a culture-dependent approach from the North Sinai Solar saltern. Egypt. J. Exp. Biol. (Bot.), 18(2), 187 - 195. https://doi.org/10.5455/egyjebb.20220726105555

Getachew, A., & Woldesenbet, F. (2016). Production and characterization of polyhydroxyalkanoates by Bacillus species using starch hydrolysate as a substrate. BMC Research Notes, 9(1), 1-7. https://doi.org/10.1186/s13104-016-2321-y

Hamdy, M. S., Daniel, A. W., Gad El-Rab, S. M. F., Shoreit, A. A. M., & Hesham, A. (2022). Production and optimization of bioplastics (polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiology, 22, 183. https://doi.org/10.1186/s12866-022-02593-z

Holt, J. G. (1994). Facultative Anaerobic Gram-Negative Rod. In: Bergey's Manual of Determinative Bacteriology, 9th Edn. Baltimore: Williams and Wilkins, 99-179.

Juengert, J. R., Bresan, S., & Jendrossek, D. (2018). Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile red staining. Bio-protocol, 8(5), e2748-e2748. https://doi.org/10.21769/BioProtoc.2748

Lathwal, P., Nehra, K., Singh, B., & Aggarwal, N. K. (2018). Statistical optimization for polyhydroxybutyrate production by Lysinibacillus fusiformis using response surface methodology. Biotechnology Progress, 34(2), 382-392.

Luengo, J. M., Garcia, B., Sandoval, A., Naharro, G., & Olivera, E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6, 251-260. https://doi.org/10.1016/S1369-5274(03)00040-7

Madhumathi, R., & Velan, M. (2016). Isolation, screening and selection of efficient polyhydroxybutyrate (PHB) synthesizing bacteria. Journal of Pure and Applied Microbiology, 10(1), 677+.

Maheshwari, N., Kumar, M., Thakur, I. S., & Srivastava, S. (2018). Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2 sequestering B. cereus SS105. Bioresource Technology, 254, 75-82. https://doi.org/10.1016/j.biortech.2018.01.002

Mostafa, I. Y., El-Sheekh, M. M., Khedr, M. H., & Abdel-Fattah, Y. R. (2020). Enhanced polyhydroxybutyrate production by Bacillus cereus LAI under high initial pH and phosphate limitation conditions. AMB Express, 10(1), 1-13.

Mwamburi, M., Tamburro, K., Naparstek, C., & Friedman, A. (2019). A pilot study on the effect of poly-β-hydroxybutyrate (PHB) on inflammation and oxidative stress in patients with rheumatoid arthritis (RA). Inflammopharmacology, 27(5), 959-967.

Narayanan, M., Kandasamy, G., Murali, P., Kandasamy, S., Ashokkumar, V., Nasif, O., & Pugazhendhi, A. (2021). Optimization and production of polyhydroxybutyrate from sludge by Bacillus cereus categorized through FT-IR and NMR analyses. Journal of Environmental Chemical Engineering, 9(1), 104908. https://doi.org/10.1016/j.jece.2020.104908

Olutiola, P. O., Famurewa, O., & Sountag, H. G. (2000). An Introduction to General Microbiology: A practical approach. Heidelberg: Heidelberger Verlagsanstalt and Druckerei GmbH, 42.

Oren, A. (2008). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4, 1-13. https://doi.org/10.1186/1746-1448-4-2

Pei, L., Schmidt, M., & Wei, W. (2011). Conversion of biomass into bioplastics and their potential environmental impacts. Biotechnology of Biopolymers, 3, 58-74. https://doi.org/10.5772/18042

Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85, 1687-1696. https://doi.org/10.1007/s00253-009-2397-6

Saharan, S.B., Grewal, A., & Kumar, P. (2014). Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese Journal of Biology, 2014. https://doi.org/10.1155/2014/802984

Shodhganga. (2011). Review of literature on poly-3-hydroxybutyrate. A PhD thesis submitted to Department of Environmental and Sustainability Studies, Teri University, Vasant Kunj, India, 6-52.

Singh, G., Mittal, A., Kumari, A., Goel, V., Aggarwal, N. K., & Yadav, A. (2011). Optimization of poly-B-hydroxybutyrate production from Bacillus species. European Journal of Biological Sciences, 3(4), 112-116.

Singh, N. K., Mallick, N., & Manorama, R. (2011). Effect of nitrogen source on bacterial polyhydroxyalkanoates production, composition and thermal property. Journal of Chemical Technology & Biotechnology, 86(2), 246-251.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197

Thapa, C., Shakya, P., Shrestha, R., Pal, S., & Manandhar, P. (2018). Isolation of polyhydroxybutyrate (PHB) producing bacteria, optimization of culture conditions for PHB production, extraction and characterization of PHB. Nepal Journal of Biotechnology, 6(1), 62-68. https://doi.org/10.3126/njb.v6i1.22339

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Downloads

Published

30-12-2023

How to Cite

George, A. E., Antia, U. E., Adeleke, A. J., & Fatunla, O. K. (2023). Optimisation of Polyhydroxy Butyrate Production by Lysinibacillus fusiformis and Metabacillus indicus isolated from Spent Engine-oil Contaminated Soil. UMYU Journal of Microbiology Research (UJMR), 8(2), 30–39. https://doi.org/10.47430/ujmr.2382.005