Screening and Characterization of Polycyclic Aromatic Hydrocarbons Tolerant Fungi from Petrochemical Refinery Effluent

Authors

  • Linda Elsee Ofeh Ameh Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria https://orcid.org/0009-0002-6983-9210
  • Dauda Abdullahi Machido Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria
  • Muhammad Bashir Tijjani Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria
  • Gudzan John Sow Department of Zoology, Biological Sciences, Ahmadu Bello University, Zaria

DOI:

https://doi.org/10.47430/ujmr.2382.014

Keywords:

Fungi, Polycyclic Aromatic Hydrocarbons, Mycoremediation, Petrochemical refinery effluent

Abstract

Fungi were isolated from effluent released by petrochemical refinery and screened for their tolerance to 50 mg/L concentration of naphthalene, phenanthrene and pyrene under agitation condition of 150 rpm and ambient temperature over a period of 21 days. Samples were analysed for residual PAH concentrations using HPLC and tolerance ability were calculated in percentages. Fungal growth in mineral salt medium supplemented with PAH was measured in dry weight of mycelial biomass was used as index for assessing their tolerance ability. Out of the 22 fungi isolated, only four were identified as Aspergillus, Talaromyces, Fusarium and Trichoderma species to exhibit tolerance to naphthalene (94.6, 96.9, 99.7 and 99.8%), phenanthrene (91.1, 92.2, 99.5 and 99.8%) and pyrene (89.4, 90.5, 92,6 and 94.2%) respectively. Low molecular weight PAHs (naphthalene and phenanthrene) were better tolerated compared to high molecular weight pyrene. Based on findings made in this study, the four isolates with higher tolerance to PAHs could be recommended for bioremediation of PAH contaminated environments.

Downloads

Download data is not yet available.

References

Agrawal, N., Preeti, V. and Sushil, K. S. (2018). Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresource Bioprocess, 5: 11. https://doi.org/10.1186/s40643-018-0197-5

Al-hawash, A. B., Dragh, M. A. S., Alhujaily, A., Abbood, H. A., Zhang, X. and Ma, F. (2018). Principles of microbial degradation of petroleum hydrocarbons in the environment. Egyptian Journal of Aquatic Research, 44(2): 71–76. https://doi.org/10.1016/j.ejar.2018.06.001

Deshmukh, R., Khardenavis, A. A. and Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian journal of microbiology, 56: 247-264. https://doi.org/10.1007%2Fs12088-016-0584-6

Ezeonuegbu, B. A., Abdullahi, M. D., Whong, C. M., Sohunago, J. W., Kassem, H. S., Yaro, C. A., Hetta, H. F., Mostafa Hedeab, G., Zouganelis, G. D. and Batiha, G. E. S. (2022). Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes. Scientific Reports, 12(1): 2094. https://doi.org/10.1038/s41598-022-05820-9

Kuyukina, M. S., Krivoruchko, A. V., and Iyshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, 10(3): 831. http://doi.org/10.3390/app10030831

Lazzem, A., Lekired, A., Ouzari, H. I., Landoulsi, A., Chatti, A. and El May, A. (2022). Isolation And Characterization Of A Newly Chrysene-Degrading A. aegrifaciens. https://doi.org/10.21203/rs.3.rs-1449640/v1

Machido, D. A., Yakubu, S. E. and Ezeonuegbu, B. A. (2014). Composition of Fungal Flora in Raw refinery Effluent, Retention Pond and a Treated Effluent Recipient River. Journal of Applied Science and Environmental Management, 18(4): 592-596. https://doi.org/10.4314/jasem.v18i4.5

Mahmud, T., Sabo, I. A., Lambu, Z. N., Danlami, D., Shehu, A. and Mahmud, T. (2022). Hydrocarbon Degradation Potentials of Fungi : A Review. Journal of Environmental, 5(1): 50–56. https://doi.org/10.54987/jebat.v5i1.681

Maletić, S. P., Beljin, J. M., Rončević, S. D., Grgić, M. G. and Dalmacija, B. D. (2019). State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. Journal of hazardous materials, 365: 467-482. https://doi.org/10.1016/j.jhazmat.2018.11.020

Medaura, M. C., Guivernau, M., Moreno-ventas, X., Prenafeta-boldú, F. X. and Viñas, M. (2021). Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Frontiers in Microbiology, 12: 626436. https://doi.org/10.3389/fmicb.2021.626436

Mohammed, D. B., Khudeir, S. H. and Al-Jubouri, M. H. (2014). The Optimum Conditions for Naphthalene Biodegradation by Filamentous Fungi. Iraqi Journal of Science, 55(4B): 1780–1791. https://www.ijs.uobaghdad.edu.iq/index.php/eijs/article/view/10749

Mustapha, H. I. (2018). Treatment of petroleum refinery wastewater with constructed wetlands. PHD Thesis, Institute of Water Education, Wageningen University Netherlands. https://doi.org/10.18174/444370

Olayinka, O. O., Adewusi, A. A., Olujimi, O. O. and Aladesida, A. A. (2018). Concentration of polycyclic aromatic hydrocarbons and estimated human health risk of water samples around Atlas Cove, Lagos, Nigeria. Journal of Health Pollution 8(20): 181210. doi: https://doi.org/10.5696/2156-9614-8.20.181210

Ontiveros-Cuadras, J. F., Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Sericano, J., Pérez-Bernal, L. H., Páez-Osuna, F. and Mucciarone, D. A. (2019). Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. Journal of hazardous materials, 368: 264-273. https://doi.org/10.1016/j.jhazmat.2018.11.010

Patel, A. B., Shaikh, S., Jain, K. R., Desai, C. and Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 11: 562813. http://dx.doi.org/10.3389/fmicb.2020.562813

Rodrigues, M. V. N. and Sette, l. D. (2018). Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process. Brazilian Journal of Microbiology, 49(4): 749–756. http://dx.doi.org/10.1016/j.bjm.2018.04.007

Samaila, A. S. and Iyeri, M. O. (2017). Treatment of Industrial Effluent of the Kaduna Refining and Petrochemical Company Using Rice Husk. Asian Journal of Environment and Ecology, 3(3): 1-10. https://doi.org/10.9734/AJEE/2017/34315

Seopela, M. P., Powers, L. C., Clark, C., Heyes, A. and Gonsior, M. (2021). Combined fluorescent measurements, parallel factor analysis and GC-mass spectrometry in evaluating the photodegradation of PAHS in freshwater systems. Chemosphere, 269: 129386. https://doi.org/10.1016/j.chemosphere.2020.129386

Stoyanova, K., Gerginova, M., Dincheva, I., Peneva, N. and Alexieva, Z. (2022). Biodegradation of Naphthalene and Anthracene by Aspergillus glaucus Strain Isolated from Antarctic Soil. Processes, 10(5): 1–14. https://doi.org/10.3390/pr10050873

Tomer, A., Singh, R., Singh, S. K., Dwivedi, S. A, Reddy, C. U., Keloth, M. R. A. and Rachel, R. (2021). Role of fungi in bioremediation and environmental sustainability. Mycobioremediation and Environmental Sustainability, 3: 187-200. https://doi.org/10.1007/978-3-030-54422-5_8

Ukaogo, P. O., Ewuzie, U. and Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health, pp. 419-429. https://doi.org/10.1016/b978-0-12-819001-2.00021-8

Uzoamaka, G.O., Floretta, T. and Florence, M.O. (2009) Hydrocarbon Degradation Potentials of Indigenous Fungal Isolates from Petroleum Contaminated Soils. J. Phy.Nat.Scs., 3: 1-6.

Downloads

Published

30-12-2023

How to Cite

Ameh, L. E. O., Machido, D. A., Tijjani, M. B., & Sow, G. J. (2023). Screening and Characterization of Polycyclic Aromatic Hydrocarbons Tolerant Fungi from Petrochemical Refinery Effluent. UMYU Journal of Microbiology Research (UJMR), 8(2), 118–128. https://doi.org/10.47430/ujmr.2382.014