Effects of Azanza garckeana Fruit Pulp on Metabolic Syndrome in Wistar Rats Fed on High Fructose Diet
DOI:
https://doi.org/10.47430/ujmr.2491.006Keywords:
Metabolic Syndrome, Azanza garckeana, High Fructose Diet, Anti-hyperglycemic, Dyslipidemia, AntioxidantAbstract
The excessive consumption of high-energy dietary sweeteners is largely to blame for the widespread metabolic syndrome around the world. This study is aimed at in vivo evaluations of the ameliorative effects of A. garckeana fruit pulp on metabolic syndrome in Wistar rats. Twenty-four (24) adult male Wistar rats were divided into six (6) groups (n=4). Groups A, B, and C received standard, high-fructose, and 2% A. garckeana fruit pulp-supplemented standard diets, respectively. Groups D, E, and F were fed 5% A. garckeana fruit pulp-supplemented standard, 2% A. garckeana fruit pulp-supplemented high-fructose, and 5% A. garckeana fruit pulp-supplemented high fructose diets. In addition to weekly monitoring of weight changes, activities of serum antioxidant enzymes, lipid profile, and blood glucose level were determined. There were no significant changes in weight gain among the groups throughout the experimental period. Compared with the initial value of blood glucose level, only the group fed high fructose diet had significantly (P<0.05) higher blood glucose levels at the end of the experiment. The group fed 5% A. garckeana fruit pulp-supplemented high-fructose diet had significantly (P<0.05) higher serum concentration of total cholesterol and HDL-cholesterol in comparison with the control. The groups fed A. garckeana fruit pulp-supplemented diets had significantly (P<0.05) higher albumin concentrations than the group fed high fructose diet. The serum urea concentration was significantly (P<0.05) lower in the group fed 2% A. garckeana fruit pulp-supplemented high fructose diet when compared with the control. The group fed 5% A. garckeana fruit pulp-supplemented high fructose diet had significantly (P<0.05) higher activities of SOD and GSH activities compared with the group fed high fructose diet. Also, the group fed 2% A. garckeana fruit pulp-supplemented high fructose diet had significantly (P<0.05) higher activities of CAT when compared with the group fed high fructose diet. It can be concluded that A. garckeana fruit pulp has anti-hyperglycemic, anti-dyslipidemic, and antioxidant effects, which could be responsible for its ameliorative effects on metabolic syndrome.
Downloads
References
Abel, L. L., Levy, B. B., Brodie, B. B., & Kendall, F. E. (1952). A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. The Journal of Biological Chemistry, 195(1), 357–366. https://doi.org/10.1016/s0021-9258(19)50907-3
Adamu, H. M., Ushie, O. A., Lawal, D. S., & Oga, I. A. (2013). Phytochemical Screening of Fruit of Azanza garckeana and Root of Acacia macrothyrsa. International Journal of Traditional and Natural Medicines, 3(1), 19–25. www.ModernScientificPress.com/Journals/IJTNM.aspx
Ahmed, R.H., El Hassan, M.S., & El Hadi, H.M. (2016). International Journal of Advanced Research in Biological Sciences Potential capability of Azanza garckeana fruits aqueous extract on enhancement of iron absorption in Wistar albino rats. Int. J. Adv. Res. Biol. Sci, 3(3), 245–250. http://s-o-i.org/1.15/ijarbs-2016-3-3-31
Alozieuwa, U. B., Lawal, B., Sani, S., Onikanni, A. S., Osuji, O., Ibrahim, Y. O., & Babalola, S. B. (2022). Research Article Luteolin-Rich Extract of Thespesia garckeana F . Hoffm . ( Snot Apple ) Contains Potential Drug-Like Candidates and Modulates Glycemic and Oxidoinflammatory Aberrations in Experimental Animals. 2022(June). https://doi.org/10.1155/2022/1215097
Arthur, J. R., & Boyne, R. (1985). Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life sciences, 36(16), 1569–1575. https://doi.org/10.1016/0024-3205(85)90381-9
Baumber, J., & Ball, B. A. (2005). Determination of glutathione peroxidase and superoxide dismutase-like activities in equine spermatozoa, seminal plasma, and reproductive tissues. American Journal of Veterinary Research, 66(8), 1415–1419. https://doi.org/10.2460/ajvr.2005.66.1415
Bioltif, Y. E., Edward, N. B., & Tyeng, T. D. (2020). A Chemical Overview of Azanza garckeana. Biology, Medicine, & Natural Product Chemistry, 9(2), 91–95. https://doi.org/10.14421/biomedich.2020.92.91-95
Busher, J. T. (1990). Serum Albumin and Globulin. Clinical Methods: The History, Physical, and Laboratory Examinations. http://www.ncbi.nlm.nih.gov/pubmed/21250048
Christopher, Y. (2016). Cytotoxicity And Antioxidant Activity of Stem Bark Extracts of Azanza garckeana (kola of Tula). European Journal of Pure and Applied Chemistry, 3(2). www.idpublications.org
Compaoré, M., Lamien, C. E., Lamien-Meda, A., Vlase, L., Kiendrebeogo, M., Ionescu, C., & Nacoulma, O. G. (2012). Antioxidant, xanthine oxidase and lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam. (Caesalpiniaceae). Natural Product Research, 26(11), 1069–1074. https://doi.org/10.1080/14786419.2011.559948
Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K., & Havel, P. J. (2002). Fructose, weight gain, and the insulin resistance syndrome. American Journal of Clinical Nutrition, 76(5), 911–922. https://doi.org/10.1093/ajcn/76.5.911
Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry, 18(6), 499–502. https://doi.org/10.1093/clinchem/18.6.499
Glew, R. S., Vanderjagt, D. J., Chuang, L. T., Huang, Y. S., Millson, M., & Glew, R. H. (2005). Nutrient content of four edible wild plants from West Africa. Plant Foods for Human Nutrition, 60(4), 187–193. https://doi.org/10.1007/s11130-005-8616-0
Goldberg, D.M. and Spooner, R.J. (1983) Assay of Glutathione Reductase. In: Bergmeyen, H.V., Ed., Methods of Enzymatic Analysis, 3rd Edition, Vol. 3, Verlog Chemie, Deerfiled Beach, 258-265.
Grundy, S. M., Hansen, B., Smith, S. C., Cleeman, J. I., Kahn, R. A., & Participants, C. (2004). Issues Related to Management. 551–556. https://doi.org/10.1161/01.CIR.0000112379.88385.67
Huang, C., Mcallister, M. J., Slusher, A. L., Webb, H. E., Mock, J. T., & Acevedo, E. O. (2015). Obesity-Related Oxidative Stress : the Impact of Physical Activity and Diet Manipulation. Sports Medicine - Open, 1–12. https://doi.org/10.1186/s40798-015-0031-y
Idoko, A., Ayuba, A., & Ilouno, E. (2018). Physical and Biochemical Studies on Excess Weight-Induced Rats Maintained on Mixed Spices-Supplemented Diet. Nigerian Journal of Basic and Applied Sciences, 26(2), 9. https://doi.org/10.4314/njbas.v26i2.2
Jiang and Youling (2016). AG effect on TC and HDL. (n.d.). Kassi, E., Pervanidou, P., Kaltsas, G., & Chrousos, G. (2011). Metabolic syndrome : definitions and controversies. Appendix 1, 1–13. https://doi.org/10.1186/1741-7015-9-48
Kassi, E., Pervanidou, P., Kaltsas, G., & Chrousos, G. (2011). Metabolic syndrome: definitions and controversies. BMC medicine, 9, 1-13. https://doi.org/10.1186/1741-7015-9-48
Kim, H. R., & Han, M. A. (2018). Association between serum liver enzymes and metabolic syndrome in Korean adults. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081658
Lawal, B., Sani, S., Onikanni, A. S., Ibrahim, Y. O., Agboola, A. R., Lukman, H. Y., Olawale, F., Jigam, A. A., Batiha, G. E. S., Babalola, S. B., Mostafa-Hedeab, G., Lima, C. M. G., Wu, A. T. H., Huang, H. S., & Conte-Junior, C. A. (2022). Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents. Biomedicine and Pharmacotherapy, 152, 113196. https://doi.org/10.1016/j.biopha.2022.113196
Macdonald, I.A. (2016). A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur J Nutr 55 (Suppl 2), 17–23. https://doi.org/10.1007/s00394-016-1340-8
Manna, P., & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. In Metabolic Syndrome and RelatedDisorders.13(10):423-444. https://doi.org/10.1089/met.2015.0095
Maroyi, A. (2017). Azanza garckeana Fruit Tree: Phytochemistry, Pharmacology, Nutritional and Primary Healthcare Applications as Herbal Medicine: A Review. Research Journal of Medicinal Plants, 11(4), 115–123. https://doi.org/10.3923/rjmp.2017.115.123
Muriel, P., López-Sánchez, P., & Ramos-Tovar, E. (2021). Fructose and the Liver. International journal of molecular sciences, 22(13), 6969. https://doi.org/10.3390/ijms22136969
National Research Council (2011). Guide for the care and use of laboratory animals, National Academies Press. Washington, DC.
Nderitu, K. W., Mwenda, N. S., Macharia, N. J., Barasa, S. S., & Ngugi, M. P. (2017). Antiobesity Activities of Methanolic Extracts of Amaranthus dubius, Cucurbita pepo, and Vigna unguiculata in Progesterone-Induced Obese Mice. Evidence-Based Complementary and Alternative Medicine. 1, 1-10. https://doi.org/10.1155/2017/4317321
Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X
Rifai, N., Bachorik, P.S., & Albers, J.J. (1999). Lipids, lipoprotein and apolipoprotein. In: Burtis CA, Ashwood E.R., editors. Tietz textbook of clinical chemistry. 3rd ed. Philadelphia: W.B. Saunders company; 806–61
Siddiq, A., & Abdullahi, A. (2023). The inclusion of garlic and turmeric powder in high-fructose diets protects against the development of metabolic syndrome in Wistar rats. 3, 54–61. https://doi.org/10.29228/ijpbp.16
Sirajo, K., Shehu, Z., & Usman, M. (2022). Study of Proximate Composition of Seed and Peel of ( Azanza garckeana ) Goron Tula. 1(2), 76–81.
Spinella, R., Sawhney, R., & Jalan, R. (2016). Albumin in chronic liver disease: structure, functions and therapeutic implications. Hepatology International, 10(1), 124–132. https://doi.org/10.1007/s12072-015-9665-6
Srivastava, R. A. K. (2018). Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. 381–391. https://doi.org/10.1007/s40200-018-0378-y
Young, D.S. (1990). Effects of Drugs on Clinical Laboratory Tests. 3rd Edition, AACC Press, Washington DC, 6-12.
Yusuf, A. A., Mohammed, B. A., Abafi, M. J., Garba, R., Usman, O. M., Ibrahim, J., Ariyeloye, D. S., & Berinyuy, E. B. (2020). Alterations in Serum Urea, Creatinine and Electrolytes Concentrations in Wister Rats Following Repeated Administration of Methanol Extracts Of azanza garckeana Pulp. Scholars International Journal of Biochemistry, 3(6), 127–131. https://doi.org/10.36348/sijb.2020.v03i06.002
Yusuf, A. A., Yissa, T. D., Agboola, A. R., Balogun, S. M., Adeboye, P. O., Hassan, O. N., & Raji, I. S. (2021). Comparative free radical scavenging and hypoglycemic activities of n-hexane, ethyl-acetate, and aqueous fractions of Azanza garckeana pulp. AROC in Natural Products Research, 1(2), 1–8. https://doi.org/10.53858/arocnpr01020108
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Godian C Iloabuchi, Ali Siddiq Idoko, Aliyu Muhammad Hannafi, Aderounmu Ibrahim Ganiyu, Sabiu Umar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.