Bacillus Species with Dye-remediation Potential – A Mini Review

Authors

DOI:

https://doi.org/10.47430/ujmr.2382.025

Keywords:

Bacillus, Bacteria, Consortium, Dyes, Remediation

Abstract

Dyes are either natural or synthetic pigments used as colour for different items including textile materials, leather, cosmetics, plastic, paper, printing ink, food, human hair or paintings. The persisting colour and toxic compounds contained in most dyes leads to serious environmental pollution which is unsuitable for the survival of many ecologically important organisms. A wide range of bacterial species have been reported to effectively remediate dyes of various types and classes. This paper reviews bacterial species from the genus Bacillus with the potentiality to remediate synthetic dyes based on published literatures. Bacillus species remediate dyes basically through biosorption and enzymatic active. The most commonly used Bacillus species are Bacillus subtilis, B. cereus, B. megaterium, B. fusiformis, B. odysseyi, B. mycoides, B. paramycoides, B. pseudomycoides, B. flexus, B. cohnii, B. licheniformis, B. spizizenii, B. algicola, B. vallismortis, B. vietnamensis, B. stratosphericus, B. halodurans, B. albus, B. aryabhattai and B. velezensis. Other researches have also proven that mixed cultures of Bacillus species and species from other microbial genera display significant efficiency in the remediation of various dyes. These species produce enzymes and compounds that aid in the breakdown of dyes, thus, reducing their impact to the environment. The use of the aforementioned Bacillus species in the remediation of other dye related environmental pollutants is highly recommended.

Downloads

Download data is not yet available.

References

Adegbite, M.A., Ibrahim, K. and Yusif, S.A. (2019). Biodegradation potential of bacterial isolated from dye wastewater at Marina, Sokoto metropolis. Nigerian Journal of Biotechnology, 36 (2): 87-94. https://doi.org/10..4314/njb.v36i2.10

Afrin, S., Shuvo, H.R., Sultana, B., Islam, F., Rus’d, A.A., Begum, S. and Hossain, M.N. (2021). The degradation of textile industry dyes using the effective bacterial consortium. Heliyon, 7: e08102. https://doi.org/10..1016/j.heliyon.2021.e08102

Ajaz, M., Shakeel, S. and Rehman, A. (2020). Microbial use for azo dye degradation – a strategy for dye bioremediation. International Microbiology, 23: 149-159. https://doi.org/10..1007/s10123-019-00103-2

Akansha, K., Kaur, T., Yadav, A., Kour, D., Rai, A.K., Singh, S., Mishra, S., Kumar, L., Miglani, K., Singh, K. and Yadav, A.N. (2023). Microbe-mediated remediation of dyes: current status and future challenges. Journal of Applied Biology & Biotechnology, 11 (4): 1-23. https://doi.org/10..7324/JABB.2023.113491

Akansha, K., Yadav, A.N., Kumar, M., Chakraborty, D. and Sachin, S.G. (2022). Decolourization and degradation of reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiology, 67 (1): 91-102. https://doi.org/10..1007/s12223-021-00914-9

Akter, T., Protity, A.T., Shaha, M., Al-Mamun, M. and Hashem, A. (2023). The impact of textile dyes on the environment. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A. and Alshammari, M.B. (eds) Nanohybrid materials for treatment of textile dyes. Smart Nanomaterials Technology, Springer, Singapore. 401-431. https://doi.org/10..1007/978-981-99-3901-5_17

Ali, H. (2010). Biodegradation of synthetic dyes- a review. Water, Air & Soil Pollution, 213: 251-273. https://doi.org/10..1007/s11270-010-0382-4

Anjaneya, O., Yogesh, S.S., Santoshkumar, M. and Karegoudar, T.B. (2011). Decolorization of sulfonated azo dye Metanil yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal of Hazardous Materials, 190: 351-358. https://doi.org/10..1016/j.jhazmat.2011.03.044

Arora, P.K. (2020). Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Frontiers in Bioengineering & Biotechnology, 8: 570307. https://doi.org/10..3389/fbioe.2020.570307

Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N. and Dastghei, S.M.M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 98 (11): 2082-2088. https://doi.org/10..1016/j.biortech.2006.08.020

Aydin, M., Agaoglu, A. and Baris, O. (2021). Azo dye decolourization by using four different psychrotolerant Bacillus species. Natural & Engineering Sciences, 6 (1): 19-29. https://doi.org/10..28978/nesciences.868061

Ayele, A., Getachew, D., Kamaraj M. and Suresh, A. (2021). Phycoremediation of synthetic dyes: an effective and eco-friendly algal technology for the dye abatement. Hindawi Journal of Chemistry, 2021: 9923643 (1-14). https://doi.org/10..1155/2021/9923643

Ayilara, M.S. and Babalola, O.O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5: 1183691. https://doi.org/10..3389/fagro.2023.1183691

Bafana, A. (2022). Identification and characterization of azoreductase enzyme AzoR2 from Bacillus velezensis for biodegradation of azo dyes. International Biodeterioration & Biodegradation, 167: 105351. https://doi.org/10..1016/j.ibiod.2021.105351

Bafana, A., Chakrabarti, T. and Devi, S.S. (2008). Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Applied Microbiology Biotechnology, 77 (5): 1139-1144. https://doi.org/10..1007/s00253-007-1212-5

Bafana, A., Khan, F. and Suguna, K. (2020). Purification, characterization and crystal structure of YhdA-type azoreductase from Bacillus velezensis. Proteins: Structure, Function & Bioinformatics, 89 (5): 483-492. https://doi.org/10..1002/prot.26032

Barathi, S., Aruljothi, K.N., Karthrik, C. and Padikasan, I.A. (2020a). Optimization for enhanced ecofriendly decolourization and detoxification of reactive blue 160 textile dye by Bacillus subtilis. Biotechnology Reports, 28: e00522. https://doi.org/10..1016/j.btre.2020.e00522

Barathi, S., Karthik, C. and Padikasan, I.A. (2020b). Biodegradation of textile dye reactive blue 160 by Bacillus firmus (Bacillaceae: Bacillates) and non-target toxicity screening of their degraded products. Toxicology Reports, 7: 16-22. https://doi.org/10..1016/j.toxrep.2019.11.017

Becker, W.M., Kleinsmith, L.J., Hardin, J. and Bertoni, G.P. (2009). The world of the cell. 7th edition, Pearson/Benjamin Cummings, San Francisco, USA. 75-77.

Bera, S.P., Shah, M.P. and Godhaniya, M. (2022). Microbial remediation of textile dye acid orange by a novel bacterial consortium SPB92. Frontiers in Environmental Science, 10: 930616. https://doi.org/10..3389/fenvs.2022.930616

Celandroni, F., Vecchione, A., Cara, A., Mazzantini, D., Lupetti, A. and Ghelardi, E. (2019). Identification of Bacillus species: implication on the quality of probiotic formulations. PLoS ONE, 14 (5): e0217021. https://doi.org/10..1371/journal.pone.0217021

Chen, Y., Zhang, L., Feng, L., Chen, G., Wang, Y., Zhai, Z. and Zhang, Q. (2019). Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology. Environmental Science & Pollution Research, 26 (24): 24658-24671. https://doi.org/10..1007/s11356-019-05781-z

Cheriaa, J., Khaireddine, M., Rouabhia, M. and Bakhrouf, A. (2012). Removal of triphenylmethane dyes by bacterial consortium. Scientific World Journal, 2012: 512454. https://doi.org/10..1100/2012/512454

Chukowry, P.K., Mudhoo, A. and Santchurn, S.J. (2017). Bacillus algicola decolourizes more than 95 % of some textile azo dyes. Environmental Chemistry Letters, 15 (1): 531-536. https://doi.org/10..1007/s10311-017-0627-1

Cui, D., Li, G., Zhao, D., Gu, X., Wang, C. and Zhao, M. (2012). Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. Journal of Hazardous Materials, 221-222: 185-192. https://doi.org/10..1016/j.jhazmat.2012.04.032

Cui, D., Li, G., Zhao, M. and Han, S. (2014). Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3 and effects of various factors on biodegradation. Biotechnology & Biotechnological Equipment, 28 (3): 478-486. https://doi.org/10..1080/13102818.2014.926053

Dafale, N., Rao, N.N., Meshram, S.U. and Wate, S.R. (2008a). Decolourization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium – biostimulation and halotolerance. Bioresource Technology, 99 (7): 2552-2558. https://doi.org/10..1016/j.biortech.2007.04.044

Dafale, N., Wate, S., Meshram, S. and Nandy, T. (2008b). Kinetic study approach of Remazol black-B use for the development of two-stage anoxic-oxic reactor for decolourization/biodegradation of azo dyes by activated bacterial consortium. Journal of Hazardous Materials, 159 (2-3): 319-328. https://doi.org/10..1016/j.jhazmat.2008.02.058

Darwesh, O.M., Moawad, H., Abd El-Rahim, W.M., Barakat, O.S. and Sedik, M.Z. (2014). Bioremediation of textile reactive blue (RB) azo dye residues in wastewater using experimental prototype bioreactor. Research Journal of Pharmaceutical Biology & Chemical Sciences, 5 (4): 1203-1219.

Dell’Anno, F., Rastelli, E., Tangherlini, M., Corinaidesi, C. and Sansone, C. (2021). Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Frontiers in Microbiology, 12. https://doi.org/10..3389/fmcb.2021.584850

Denz-Mendez, A., Garcia-Fraile, P., Solano, F. and Rivas, R. (2019). The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye. Scientific Reports, 9: 15217. https://doi.org/10. 1038/s41598-019-51669-w

Desai, S.A. (2017). Isolation and characterization dye degrading bacteria for detoxification of dark red 2B. Bioscience Discovery, 8 (3): 426-431.

Ekanayake, E.M.M.S. and Manage, P.M. (2020). Green approach for decolourization and detoxification of textile dye-CI direct blue 201 using native bacterial strains. Environment & Natural Resources Journal, 18 (1): 1-8. https://doi.org/10..32526/ennrj.18.1.2020.01

Elizaryev, A., Elizareva, E., Tarakanov, D. and Fakhertdinova, A. (2023). Biological approaches to the purification of textile wastewater. E3S Web of Conferences, 389: 04001, UESF-2023. https://doi.org/10..1051/e3sconf/202338904001

Elkady, M., Zaki, S., Farag, S. and Abd-El-Haleem, D. (2017). Bioflocculation of basic dye onto isolated microbial biopolymers. Chemical & Biochemical Engineering Quarterly, 31 (3): 209-224. https://doi.org/10..15255/CABEQ.2016.1031

Ewida, A.Y.I., El-Sesy, M.E. and Zeid, A.A. (2019). Complete degradation of azo dye acid red 337 by Bacillus megaterium KY848339.1 isolated from textile wastewater. Water Science, 33 (1): 154-161. https://doi.org/10..1080/11104929.2019.1688996

Ezhilarasu, A. (2016). Textile industry dye degrading by bacterial strain Bacillus sp. International Journal of Advanced Research in Biological Sciences, 3 (3): 211-226. SOI: 1.15/ijarbs-2016-3-3-27

Fidiastuti, H.R., Lathifah, A.S., Amin, M. and Utomo, Y. (2020). Studies of Bacillus subtilis NAP1 to degrade BOD, COD, TSS and pH: the indigenous bacteria in Indonesia Batik wastewater. Journal of Physics Conference Series, 1511: 012060. https://doi.org/10..1088/1742-6596/1511/1/012060

Fletcher, C.A., St. Clair, R. and Sharmina, M. (2021). A framework for assessing the circularity and technological maturity of plastic waste management strategies in hospitals. Journal of Cleaner Production, 306: 127169. https://doi.org/10..1016/j.jclepro.2021.127169

Forgacs, E., Cserhati, T. and Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30 (2): 953-971. https://doi.org/10..1016/j.envint.2004.02.001

Franca, R.D.G., Vieira, A., Carvalho, G., Oehmen, Pinheiro, H.M., Barreto, C.M.T. and Lourenco, N.D. (2020). Oerskovia paurometabola can efficiently decolourize azo dye acid red 14 and remove its recalcitrant metabolite. Ecotoxicology & Environmental Safety, 191: 110007. https://doi.org/10..1016/j.ecoenv.2019.110007

Franciscon, E., Grossman, M.J., Paschoal, J.A.R., Reyes, F.G.R. and Durrant, L.R. (2012). Decolourization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1: 37. https://doi.org/10..1186/2193-1801-1-37

Fritze, D. (2004). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology, 94 (11): 1245-1248. https://doi.org/10..1094/PHYTO.2004.94.11.12

Gao, Y., Yang, B. and Wang, Q. (2018). Biodegradation and decolourization of dye wastewater: a review. IOP Conference Series: Earth & Environmental Science, 178: 012013. https://doi.org/10..1088/1755-1315/178/1/012013

Gomaa, O.M., Ibrahim, S.A.E. and Mansour, N.M. (2023). Bacillus spizizenii DN and microbial consortia biostimulation followed by gamma irradiation for efficient textile wastewater treatment. Environmental Science & Pollution Research, 30: 33907-33916. https://doi.org/10..1007/s11356-022-24599-w

Guadie, A., Tizazu, S., Melese, M., Guo, W., Ngo, H.H. and Xia, S. (2017). Biodecolourization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnology Reports, 15: 92-100. https://doi.org/10..1016/j.btre.2017.06.007

Gul, U.D. (2018). Bioremediation of dyes in textile wastewater. Turkish Journal of Scientific Reviews, 11 (2): 24-28.

Hassan, S., Awad, Y.M., Kabir, M.H., Oh, S. and Joo, J.H. (2010). Bacterial biosorption of heavy metals, In: Biotechnology cracking new pastures, chapter 4, MD Publications PVT LTD, New Delhi, 79-110.

Holey, B.A. (2015). Decolourization of Congo red dye by bacteria and consortium isolated from dye contaminated soil. International Research Journal of Science & Engineering, 3 (3): 107-112.

Horitsu, H., Takada, M., Idaka, E., Tomoyedo, M. and Ogawa, T. (1977). Degradation of aminoazobenzene by Bacillus subtilis. European Journal of Applied Microbiology & Biotechnology, 4: 217-224. https://doi.org/10..1007/BF01390482

Hossain, M.S., Paul, G.K., Mahmud, S. Saleh, M.A., Uddin, M.S., Dutta, A.K., Roy, A.K., Sheam, M.M., Ahmed. S., Rahman, M.M., Paul, D.K. and Biswas, S.K. (2022). Mixed dye degradation by Bacillus pseudomycoides and Acinetobacter haemolyticus isolated from industrial effluents: a combined affirmation with wetlab and in silico studies. Arabian Journal of Chemistry, 15 (9): 104078. https://doi.org/10..1016/j.arabjc.2022.104078

Hu, T.L. (1996). Removal of reactive dyes from aqueous solution by different bacterial genera. Water Science Technology, 34 (10): 89-95. https://doi.org/10..1016/S0273-1223(96)00701-9

Huda, N., Khanom, A., Rahman, M.M., Huq, M.A., Rahman, M.M. and Banu, N.A. (2022). Biochemical process and functional genes of arsenic accumulation in bioremediation: agricultural soil. International Journal of Environmental Science & Technology, 19 (4): 9189-9208. https://doi.org/10..1007/s13762-021-03655-x

Hussein, M.H., El-Wafa, G.S.A., Shaaban-Dessuki, S.A., Abd-Allah, A.M. and El-Morsy, R.M. (2019). Efficiency of azo dyes biodegradation by Nostoc carneum. Journal of Agriculture & Forest Meteorology Research (JAFMR), 2 (4): 160-176.

Huy, N.D., Ha, D.T.T., Khoo, K.S., Lan, P.T.N., Quang, H.T., Loc, N.H., Park, S., Veeramuthu, A. and Show, P.L. (2020). Synthetic dyes removal by Fusarium oxysporum HUIB02 and stimulation effect on laccase accumulation. Environmental Technology & Innovation, 19 (1): 101027. https://doi.org/10..1016/j.eti.2020.101027

Ito, T. Shimada, Y. and Suto, T. (2018). Potential use of bacteria collected from human hands for textile dye decolourization. Water Resources & Industry, 20: 46-53. https://doi.org/10..1016/j.wri.2018.09.001

Jadhav, J.P., Kalyani, D.C., Telke, A.A., Phugare, S.S., Govindwar, S.P. (2010). Evaluation of the efficacy of a bacterial consortium for the removal of colour reduction of heavy metals and toxicity of textile dye effluent. Bioresource Technology, 101 (1): 165-173. https://doi.org/10..1016/j.biortech.2009.08.027

Jadhav, S.U., Jadhav, M.U., Kagalkar, A.N. and Govindwar, S.P. (2008). Decolourization of brilliant-blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. Journal of the Chinese Institute of Chemical Engineers, 39 (6): 563-570. https://doi.org/10..1016/j.jcice.2008.06.003

Jain, K., Shah, V. Chapla, D. and Madamwar, D. (2012). Decolourization and degradation of azo dye – reactive violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Journal of Hazardous Materials, 213-214: 378-386. https://doi.org/10..1016/j.jhazmat.2012.02.010

Jamee, R. and Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology & Immunology, 9 (4): 114-118. https://doi.org/10..1556/1886.2019.00019

Kabeer, F.A., John, N. and Abdulla, M.H. (2019). Biodegradation of malachite green by a newly isolated Bacillus vietnamensis sp. MSB17 from continental slope of the Eastern Arabian sea: enzyme analysis, degradation pathway and toxicity studies. Bioremediation Journal, 23 (4): 334-342. https://doi.org/10..1080https://doi.org/10.889868.2019.1671790

Kannan, S., Palanichamy, J., Sugitha, T. and Mayilsami, C. (2022). Bioremediation of textile dyeing industry effluent from small scale industries using a microbial consortium of Bacillus sp., Escherichia coli and Aspergillus niger. Journal of Applied Biology & Biotechnology, 10 (2): 100-106. https://doi.org/10..7324/JABB.2022.10s211

Karim, M.E., Dhar, K. and Hossain, M.T. (2018). Decolourization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. Journal of Genetic Engineering & Biotechnology, 16 (2): 375-380. https://doi.org/10..1016/j.jgeb.2018.02.005

Khalid, A., Kausar, F., Arshad, M., Mahmood, T. and Ahmed, I. (2012). Accelerated decolourization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Applied Microbiology & Biotechnology, 96 (6): 1-8 https://doi.org/10..1007/s00253-012-3877-7

Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S. and Chimini, S.S. (2005a). Decolourization of various azo dyes by bacterial consortium. Dyes & Pigments, 67 (1): 55-61. https://doi.org/10..1016/j.dyepig.2004.10.008

Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S. and Chimini, S.S. (2005b). Comparative studies on potential of consortium and constituent pure bacterial isolates to decolourize azo dyes. Water Research, 39 (20): 5135-5141. https://doi.org/10..1016/j.watres.2005.09.033

Kolekar, Y.M., Pawar, S.P., Gawai, K.R., Lokhande, P.D., Shouche, Y.S. and Kodam, K.M. (2008). Decolourization and degradation of disperse blue 79 and acid orange 10 by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresource Technology, 99 (18): 8999-9003. https://doi.org/10..1016/j.biortech.2008.04.073

Korcan, S.E., Citekci, K., Aydin, B., Abed, A.B. and Akkus, G.U. (2022). Bacillus aryabhattai SMNCH17-07 strain: first isolation and characterization from textile wastewater with evaluation of its decolourization ability against azo dyes. Tekstil Ve Konfeksiyon, 32 (2): 99-107. https://doi.org/10..32710/tekstilvekonfeksiyon.929205

Kuberan, T., Anburaj, J., Sundaravadivelan, C. and Kumar, P. (2011). Biodegradation of azo dye by Listeria sp. International Journal of Environmental Sciences, 1 (7): 1760-1770.

Kulandaivel, S., Kaleeswari, P. and Mohanapriya, P. (2014). Decolourization and adsorption of dyes by consortium of bacteria with agriculture waste. International Journal of Current Microbiology & Applied Sciences, 3 (12): 865-882.

Kumar, A., Dixit, U., Singh, K., Gupta, S.P. and Beg, M.S.J. (2021). Structure and Properties of dyes and pigments. In: Dyes and pigments. IntechOpen limited, London, UK. 1-9. https://doi.org/10..5772/intechopen.97104

Kumar, K., Devi, S.S., Krishnamurthi, K., Dutta, D. and Chakrabarti, T. (2007). Decolourization and detoxification of direct blue-15 by a bacterial consortium. Bioresource Technology, 98 (16): 3168-3171. https://doi.org/10..1016/j.biortech.2006.10.037

Kumar, N., Sinha, S., Mehrotra, T., Singh, R., Tandon, S. and Thakur, I.S. (2019). Biodecolourization of azo dye acid black 24 by Bacillus pseudomycoides: process optimization using box Behnken design model and toxicity assessment. Bioresource Technology Reports, 8: 1003. https://doi.org/10. 1016/j.biteb.2019.100311

Lellis, B., Favaro-Polonio, C.Z., Pamphile, J.A. and Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research & Innovation, 3 (2): 275-290. https://doi.org/10..1016/j.biori.2019.09.001

Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A. and Scott, M.P. (2013). Molecular cell biology. 7th edition, W.H. Freeman and Company, New York. 13.

Madhuri, T., Indrani, V. and Devi, P.S. (2018). Analytical biodegradation of azo dye (Remazol red, RB) by Bacillus cereus. Journal of Chemical &. Pharmaceutical Research, 10 (4): 74-80.

Maheshwar, N.U. and Sivagami, S. (2016). Biological degradation of textile dyes using marine Bacillus species. International Journal of Pure & Applied Biosciences., 4: 123-128.

Mahmood, R., Sharif, F., Ali, S. and Hayyat, M.U. (2015). Enhancing the decolourizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on soil germination. Scientific World Journal, 2015: 628195 (1-9). https://doi.org/10..1155/2015/628195

Manzoor, J. and Sharma, M. (2020). Impact of textile dyes on human health and environment. In: Impact of textile dyes on public health and the environment, CH 8, 162-169. https://doi.org/10..4018/978-1-7998-0311-9.ch008

Mishra, A., Takkar, S., Joshi, N.C., Shukla, S., Shukla, K., Singh, A., Manikonda, A. and Varma, A. (2022). An integrative approach to study bacterial enzymatic degradation of toxic dyes. Frontiers in Microbiology, 12: 802544. https://doi.org/10..3389/fmicb.2021.802544

Mishra, S., Nayak, J.K. and Maiti, A. (2020). Bacteria-mediated biodegradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Technologies & Environmental Policy, 22 (11): 651-667. https://doi.org/10..1007/s10098-020-01809-y

Modi, H.A., Rajput, G. and Ambasana, C. (2010). Decolourization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresource Technology, 101 (16): 6580-6583. https://doi.org/10..1016/j.biortech.2010.03.067

Mohanty, S.S. and Kumar, A. (2021). Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Scientific Reports, 11 (1): 7678. https://doi.org/10..1038/s41598-021-87227-6

Mullai, P., Yogeswari, M.K., Vishali, S., Tejas Namboodiri, M.M., Gebrewold, B.D., Rene, E.R. and Pakshirajan, K. (2017). Aerobic treatment of effluents from textile industry. Current developments in biotechnology and bioengineering: biological treatment of industrial effluents, Elsevier Publications, 1-44.

Mustapha, M.U. and Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. Journal of Microbial & Biochemical Technology, 7 (5): 253-256. https://doi.org/10..4172/1948-5948.1000219

Nairr, L.K., Begum, D.M. and Ragunathan, D.R. (2017). Biodegradation of azo dyes using Bacillus megaterium and its phytotoxicity study. IOSR Journal of Environmental Science, Toxicology & Food Technology (IOSR-JESTFT), 11 (7,1): 12-20. https://doi.org/10..9790/2402-1107011220

Ogugbue, C.J., Morad, N., Sawidis, T. and Oranusi, N.A. (2012). Decolourization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel. 3 Biotech., 2: 67-78. https://doi.org/10..1007/s13205-011-0035-3

Panwar, P., Mahajan, P. and Kaushal, J. (2023). Microbial bioremediation of azo dyes: an environmentally sustainable technology. Remediation Journal, 33 (2): 151-165. https://doi.org/10..1002/rem.21745

Patel, S. and Gupta, R.S. (2020). A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. International Journal of Systematic & Evolutionary Microbiology, 70 (1): 406-438. https://doi.org/10..1099/ijsem.0.003775

Patil, P.S., Phugare, S.S., Jadhav, S.B. and Jadhav, J.P. (2010). Communal action of microbial cultures for red HE3B degradation. Journal of Hazardous Materials, 181 (1-3): 263-270. https://doi.org/10..1016/j.jhazmat.2010.05.006

Patil, P.S., Shedbalkar, U.U., Kalyani, D.C. and Jadhav, J.P. (2008). Biodegradation of reactive blue 59 by isolated bacterial consortium PMB11. Journal of Industrial Microbiology & Biotechnology, 35: 1181-1190. https://doi.org/10..1007/s10295-008-0398-6

Pereira, G.C.S., Corso, C.R. and Forss, J. (2019). Evaluation of two different carriers in the biodegradation process of an azo dye. Journal of Environmental Health Science & Engineering, 17: 633-643. https://doi.org/10..1007/s40201-019-00377-8

Pham, V.H.T., Kim, J., Chang, S. and Bang. D. (2023). Investigating bio-inspired degradation of textile dyes using potential multi-enzyme producing extremophiles. Microorganisms, 11 (5): 1273. https://doi.org/10..3390/microorganisms11051273

Phugare, S.S., Kalyani, D.C., Patil, A.V. and Jadhav, J.P. (2011). Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 186 (1): 713-723. https://doi.org/10..1016/j.jhazmat.2010.11.049

Prasad, A.A. and Rao, K.B. (2013). Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616: an obligatory alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology & Biotechnology, 97: 7469-7481. https://doi.org/10..1007/s00253-012-4492-3

Prasad, A.S. and Rao, K.V. (2014). Aerobic biodegradation of azo dye acid black-24 by Bacillus halodurans. Journal of Environmental Biology, 35 (3): 549-554.

Prasad, S.S. and Aikat, K. (2014). Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environmental Technology, 35 (8): 956-965. https://doi.org/10..1080/09593330.2013.856957

Rahaya, F., Marjani, I.M., Rochman, F., Qazi, R.A., Zeb, K. and Ullah, N. (2023). Newly isolated ligninolytic bacteria and its applications for multiple dye degradation. Water, Air & Soil Pollution, 234: 359. https://doi.org/10..1007/s11276-023-06377-7

Rani, V.P., Priya, K.S., Nancy, A.A., Kumari, G.M. and Pradeepa, P.G.F. (2016). Halotolerant bacterial strains: a potential source of microbial degradation of acid blue 113. Journal of Environmental Science, Computer Science and Engineering & Technology (JECET), 5 (1): 187-192.

Rathod, M.G. and Pathak, A.P. (2018). Efficient decolourization of textile dyes by alkaline protease producing bacterial consortia. Indian Journal of Geo-Marine Sciences, 47 (7): 1468-1477.

Rima, S.A.J., Paul, G.K., Islam, S., Akhtar-E-Ekram, M., Zaman, S., Saleh, M.A. and Uddin, M. S. (2022). Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: a combined study on molecular identification, growth optimization and comparative degradation. Journal of Hazardous Materials Letters, 3: 100068. https://doi.org/10..1016/j.hazl.2022.100068

Rosenberg, E. and Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: the hologenome concept; minireview. mBio, 7 (2): e01395-15 (1-8). https://doi.org/10..1128/mBio.01395-15

Saha, P. and Rao, K.V.B. (2020). Biotransformation of reactive orange 16 by alkaliphilic bacterium Bacillus flexus VITSP6 and toxicity assessment of biotransformed metabolites. International Journal of Environmental Science & Technology, 17 (1): 99-114. https://doi.org/10..1007/s13762-019-02256-z

Saini, D., Battan, B., Maan, S. and Sharma, J. (2018). Decolourization of dyes by Alcaligenes faecalis and Bacillus flexus isolated from textile effluent. Indian Journal of Experimental Biology, 56: 820-826.

Sani, Z.M. (2023). Assessment of microbial biosorption on industrial dyes used in re-dyeing textile materials in urban Kano, Nigeria. Ph.D. thesis submitted to the Department of Biological Sciences, Bayero University, Kano, Nigeria.

Sani, Z.M., Abdullahi, I.L. and Sani, A. (2018). Toxicity Evaluation of Selected Dyes Commonly used for Clothing Materials in Urban Kano, Nigeria. European Journal of Experimental Biology, 8 (4): 26. https://doi.org/10..21767/2248-9215.100067

Sani, Z.M., Dalhatu, A.S. and Ibrahim, S. (2021). Comparative study of the potentials of Aspergillus terreus, Bacillus species and Chlorella vulgaris on the bioremediation of reactive red 198 (RR198) dye. UMYU Journal of Microbiology Research (UJMR), 6 (1): 168-174. https://doi.org/10..47430/ujmr.2161.034

Sani, Z.M., Muhammad, Y.Y., Umar, K.M. and Ibrahim, S. (2022). Bioremediation of reactive dyes by Bacillus megaterium and Bacillus velezensis. Asian Journal of Biological Sciences, 15 (3): 164-171. https://doi.org/10..17311/ajbs.2022.164.171

Sant’Anna, F.H., Reiter, K.C., Almeida, P.F. and Passaglia, L.M.P. (2020). Systematic review of descriptions of novel bacterial species: evaluation of the twenty-first century taxonomy through text mining. International Journal of Systematic & Evolutionary Microbiology, 70 (4): 2925-2936. https://doi.org/10..1099/ijsem.0.004070

Saranraj, P., Sumathi, V., Reetha, D. and Stella, D. (2010). Decolourization and degradation of direct azo dyes and biodegradation of textile dye effluent by using bacteria isolated from textile dye effluent. Journal of Ecobiotechnology, 2 (7): 7-11.

Saratale, R.G., Saratale, G.D., Chang, J.S. and Govindwar, S.P. (2011). Bacterial decolourization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42 (1): 138-157. https://doi.org/10..1016/j.jtice.2010.06.006

Saravanan, N., Kannadasan, T., Basha, C.A. and Manivasagan, V. (2013). Biosorption of textile dye using immobilized bacterial (Pseudomonas aeruginosa) and fungal (Phanerochate chrysosporium) cells. American Journal of Environmental Science, 9 (4): 377-387. https://doi.org/10..3844/ajessp.2013.377.387

Sari, I.P. and Simarani, K. (2019). Decolourization of selected azo dye by Lysinibacillus fusiformis W1B6: biodegradation optimization, isotherm and kinetic study biosorption mechanism. Adsorption Science & Technology, 37 (5-6): 492-508. https://doi.org/10..1177/0263617419848897

Senan, R.C. and Abraham, T.E. (2004). Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation, 15 (4): 275-280. https://doi.org/10..1023/B:BIOD.0000043000.18427.0a

Shah, M.P. (2014). Bioremedial application of Bacillus megaterium PMS82 in microbial degradation of acid orange dye. International Journal of Environmental Bioremediation & Biodegradation, 2 (3): 93-99. https://doi.org/10..12691/ijebb-2-3-1.

Shah, M.P. and Bera, S.P. (2021). Microbial treatment of textile dye reactive red 3 by a newly developed bacterial consortium. Nanotechnology for Environmental Engineering, 6 (3): 62. https://doi.org/10..1007/s41204-021-00156-7

Shah, M.P., Patel, K.A., Nair, S.S. and Darji, A.M. (2013). Potential effect of two Bacillus spp. on decolourization of azo dye. Journal of Bioremediation & Biodegradation, 4 (7):199-202. https://doi.org/10..4172/2155-6199.1000199

Sharma, M., Agarwal, S., Malik, R.A., Kumar, G., Pal, D.B., Mandal, M., Sarkar, A., Bantun, F., Haque, S., Singh, P., Srivastava, N. and Gupta, V.K. (2023). Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered, 14 (1): 2184518. https://doi.org/10..1080/21655979.2023.2184518

Shi, Y., Yang, Z., Xing, L., Zhang, X., Li, X. and Zhang, D. (2021). Recent advances in the biodegradation of azo dyes. World Journal of Microbiology & Biotechnology, 37: 137. https://doi.org/10..1007/s11274-021-03110-6

Singh, R.L., Singh, P.K. and Singh, R.P. (2015). Enzymatic decolourization and degradation of azo dyes: a review. International Biodeterioration & Biodegradation, 104: 21-31. https://doi.org/10..1016/j.ibiod.2015.04.027

Srinivasan, A. and Viraraghavan, T. (2010). Decolourization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 91 (10): 1915-1929. https://doi.org/10..1016/j.jenvman.2010.05.003

Sriram, N., Reetha, D. and Saranraj, P. (2013). Biological degradation of reactive dyes by using bacteria isolated from dye effluent contaminated soil. Middle-East Journal of Scientific Research, 17 (12): 1695-1700. https://doi.org/10..5829/idosi.mejsr.2013.17.12.81146

Srivastava, A., Dangi, L.K., Kumar, S. Rani, R. (2022). Microbial decolorization of reactive black 5 dye by Bacillus albus DD1 isolated from textile water effluent: kinetic, thermodynamics and decolorization mechanism. Heliyon, 8 (2): e08834. https://doi.org/10..1016/j.heliyon.2022.e08834

Sudha, D. and Balagurunathan, R. (2013). Biodegradation of reactive red 2 azo dye by Bacillus licheniformis isolated from textile effluent contaminated site. International Journal of Current Research & Review (IJCRR), 5 (18): 1-9. https://doi.org/10..31782/2231-2196

Tamboli, D.P., Kurade, M.B., Waghmode, T.R., Joshi, S.M. and Govindwar, S.P. (2010). Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye direct blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation. Journal of Hazardous Materials, 182 (1-3): 169-176. https://doi.org/10..1016/j.jhazmat.2010.06.011

Telke, A.A., Kadam, A.A. and Govindwar, S.P. (2015). Bacterial enzymes and their role in decolourization of azo dyes. In: S.N. Singh (ed.), Microbial degradation of synthetic dyes in wastewaters, Cham: Springer, 149-168. https://doi.org/10..1007/978-3-319-10942-8_7

Thangaraj, S., Bankole, P.O. and Sadasivam, S.K. (2021). Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiological Research, 250: 126805. https://doi.org/10..1016/j.micres.2021.126805

Thiruppathi, K., Rangasamy, K., Ramasamy, M. and Muthu, D. (2021). Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environmental Challenges, 4: 100078. https://doi.org/10..1016/j.envc.2021.100078

Tony, B.D., Goyal, D. and Khanna, S. (2009). Decolourization of textile azo dyes by aerobic bacterial consortium. International Biodeterioration & Biodegradation, 63 (4): 462-469. https://doi.org/10..1016/j.ibiod.2009.01.003

Tripathi, A. and Srivastava, S.K. (2012). Biodegradation of orange G by a novel isolated bacterial strain Bacillus megaterium ITBHU01 using response surface methodology. African Journal of Biotechnology, 11 (7): 1768-1781. https://doi.org/10..5897/AJB11.2560

Tripathi, M., Singh, P., Singh, R., Bala, S., Pathak, N., Singh, S., Chauhan, R.S. and Singh, P.K. (2023). Microbial biosorbent for remediation of dyes and heavy metals pollution: a green strategy for sustainable environment. Frontiers in Microbiology, 14: 1168954. https://doi.org/10..3389/fmicb.2023.1168954

UKSMI – UK Standards for Microbiology Investigations (2018). Bacteriology – Identification: Identification of Bacillus species. The Standards Unit, Public Health, England, ID 9 (3.1): 9-12. Issue date: 04/04/18.

Vani, V., Naik, D.K., Leelamani, B. and Faraz, S. (2018). Decolourization potential of Bacillus species for removal of synthetic dyes such as malachite green and methylene blue. World Journal of Pharmaceutical Research, 7 (15): 965-971. https://doi.org/10..20959/wjpr201815-13048

Zergler, D.R. and Perkins, J.B. (2008). The genus Bacillus: In: Goldman, E., Green, L.H. Practical handbook of microbiology, 2nd (ed), CRC Press, Taylor & Francis group, Boca Raton, New York, 309-326. https://doi.org/10..1201/9781420009330.24

Zhang, C., Diao, H., Lu, F., Bie, X., Wang, Y. and Lu, Z. (2012). Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresource Technology, 126: 80-86. https://doi.org/10..1016/j.biortech.2012.09.055

Downloads

Published

30-12-2023

How to Cite

Sani, Z. M. (2023). Bacillus Species with Dye-remediation Potential – A Mini Review. UMYU Journal of Microbiology Research (UJMR), 8(2), 212–226. https://doi.org/10.47430/ujmr.2382.025