The potential of Serratia marcescens in Bioremediation of Crude-oil Polluted Soil
DOI:
https://doi.org/10.47430/ujmr.2491.008Keywords:
Bioremediation, Crude-oil polluted soil, Hydrocarbon-degradation potential, Red colonies, Serratia marcescensAbstract
Bioremediation, which involves the use of microorganisms, is an environmentally friendly approach in restoring crude-oil polluted environments. The use of Serratia marcescens (SM) in bioremediation of crude-oil polluted soil was investigated in this study. Soil from a farm was inoculated in nutrient broth for bacterial enrichment. The broth culture was inoculated on nutrient agar and incubated at ambient temperatures (27 – 32 °C). Bacterial isolates with red colonies were selected and identified. Identified SM was used in preparing bacterial-mineral-salts suspension. The bioremediation experiment consisted of two setups: Control (CT) and setup treated with SM (TSM). Both setups contained crude-oil polluted soil. Mineral-salt solution and the bacterial-mineral-salt suspension were added to setup CT and TSM, respectively. Total hydrocarbon concentration (THC), total heterotrophic bacteria (THB), hydrocarbon utilizing bacteria (HUB), total fungi (TF), and hydrocarbon utilizing fungi (HUF) in the setups were determined at various times. About 38.3 % and 46.5 % THC reduction were achieved in setup CT and TSM, respectively. The percentage of THB that are HUB was higher in setup TSM on day 7 (8.8 %) and day 28 (4.4 %) but higher in setup CT on day 14 (1.7 %) and day 21 (6.6 %). The percentage of TF that are HUF was higher in setup TSM on day 14 (98.0 %) and on day 28 (41.6 %) but higher in setup CT on day 21 (85.3 %). It is concluded that SM has a potential for use in bioremediation of crude-oil polluted soil
Downloads
References
Adedoyin, F. T., Sridhar, B. B. M., & Rosenzweig, J. A. (2023). Impact of metal exposure on environmentally isolated Serratia marcescens’ growth, oxidative-stress resistance, biofilm formation, and proliferation in eukaryotic co-culture models. Ecotoxicol. Environ. Saf., 253: 114677. https://doi.org/10.1016/j.ecoenv.2023.114677
Agbor, R. B., & Antai, S. P. (2019). Phylogenetic Relationship of bacterial species involved in bioremediation of hydrocarbon polluted soils. Annu. Res. Rev. Biol., 32 (6), 1-13. https://doi.org/10.9734/arrb/2019/v32i630104
Agbodjato, N. A., Noumavo, P. A., Baba-Moussa, F., Salami, H. A., Sina, H., Sèzan, A., Bankolé, H., Adjanohoun, A., Baba-Moussa, L. (2015). Characterization of potential plant growth promoting rhizobacteria isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Appl. Environ. Soil Sci., Article ID 901656. https://doi.org/10.1155/2015/901656
Akoachere , J-F. T. K., Akenji, T. N., Yongabi, F. N., Nkwelang, G., & Ndip, R. N. (2008). Lubricating oil-degrading bacteria in soils from filling stations and auto- mechanic workshops in Buea, Cameroon: occurrence and characteristics of isolates. Afr. J. Biotechnol., 7 (11), 1700-1706.
Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10 (8): 484. https://doi.org/10.3390/toxics10080484
Bhargavi, P. L., Kumar, B. S., & Prakasham, R. S. (2012). Impact of Nutritional factors verses Biomass and Serralysin Production in isolated Serratia marcescens. Curr. Trends Biotechnol. Pharmacy, 6 (4), 449-457.
Bidja-Abena, M. T., Chen, G., Chen, Z., Zheng, X., Li, S., Li, T., & Zhong, W. (2020). Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech, 10 (2): 42-57. https://doi.org/10.1007/s13205-019-2027-7
Chikere, C. B., Chikere, B. O., & Okpokwasili, G. C. (2012). Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech, 2 (1): 53-66. https://doi.org/10.1007/s13205-011-0030-8
Chukwuka, K. S., Alimba, C. G., Ataguba, G. A., Jimoh, W. A. (2018). The Impacts of Petroleum Production on Terrestrial Fauna and Flora in the Oil-Producing Region of Nigeria. In P. E. Ndimele (Ed.), The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (pp. 125-142). Academic Press. https://doi.org/10.1016/B978-0-12-809399-3.00009-4
Ebuehi, O. A. T., Abibo, I. B., Shekwolo, P. D., Sigismund, K. I., Adoki, A., & Okoro, I. C. (2005). Remediation of crude oil contaminated soil by enhanced natural attenuation technique. J. Appl. Sci. Environ. Manage., 9 (1), 103-106.
Fu, R., Luo, J., Feng, K., Lu, X., & Tang, F. (2021). Termite-killing components in Serratia marcescens (SM1). J. For. Res., 32, 1739–1744. https://doi.org/10.1007/s11676-020-01172-0
Gillen, A. L. & Gibbs, R. (2012). Serratia marcescens: The Miracle Bacillus. Faculty Publications and Presentations, 138. https://digitalcommons.liberty.edu/bio_chem_fac_pubs/138
Haddix, P. L., & Shanks, R. M. Q. (2018). Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. Arch. Microbiol., 200 (7), 989–999. https://doi.org/10.1007/s00203-018-1508-0
Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. J. Med. Microbiol., 46 (11), 903-912. https://doi.org/10.1099/00222615-46-11-903
Hossain, F., Akter, A., Sohan, S. R., Sultana, N., Reza, A., Hoque, K. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi J. Biol. Sci., 29 (1), 211-216. https://doi.org/10.1016/j.sjbs.2021.08.069
Huang, J., Ai, G., Liu, N., & Huang, Y. (2022). Environmental adaptability and organic pollutant degradation capacity of a novel Rhodococcus species derived from soil in the uninhabited area of the Qinghai-Tibet plateau. Microorganisms, 10 (10): 1935. https://doi.org/10.3390/microorganisms10101935
Ketola, T., & Hiltunen, T. (2014). Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens. Ecol. Evol., 4 (20), 3901-3908. https://doi.org/10.1002/ece3.1253
Khanna, A., Khanna, M., & Aggarwal, A. (2013). Serratia marcescens - a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J. Clinical and Diagnostic Res., 7 (2), 243–246. https://doi.org/10.7860/JCDR/2013/5010.2737
Konecka, E., Mokracka, J., Krzymińska, S., & Kaznowski, A. (2019). Evaluation of the pathogenic potential of insecticidal Serratia marcescens strains to humans. Polish J. Microbiol., 68 (2), 185–191. https://doi.org/10.21307/pjm-2019-018
Murdoch, S. L., Trunk, K., English, G., Fritsch, M. J., Pourkarimi, E., & Coulthurst, S. J. (2011). The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol., 193 (21), 6057-6069. https://doi.org/10.1128/JB.05671-11
Obiajulu, N. O.., Chukwuma, O. J., & Chukwudi, A. (2022). Crude oil hydrocarbon degradation efficiency of indigenous bacterial strains isolated from contaminated sites in Nigeria. J. Biol. Res. Biotechnol., 20 (2), 1606-1609. https://dx.doi.org/10.4314/br.v19i2.8
Odokuma, L. O., & Dickson, A. A. (2003). Bioremediation of a crude oil polluted tropical mangrove environment. J. Appl. Sci. Environ. Manage., 7 (2), 23-29.
Ojimba, T. P. (2011). Economic effects of crude oil spillages on crop farms in Rivers State, Nigeria. Global J. Pure Appl. Sci., 17 (2), 131-136.
Olajide, P. O., & Adeloye, A. O. (2023). Hydrocarbon biodegradation by Proteus and Serratia strains isolated from oil-polluted water in Bonny Community, Niger Delta, Nigeria. Results Chem., 5: 100735. https://doi.org/10.1016/j.rechem.2022.100735
Ordinioha, B., & Brisibe, S. (2013). The human health implications of crude oil spills in the Niger delta, Nigeria: An interpretation of published studies. Nigerian Med. J., 54 (1), 10-16. https://doi.org/10.4103/0300-1652.108887
Othman, M. A., El-Zamik, F. I., Hegazy, M. I., & Salama, A. S. A. (2019). Isolation and identification of Egyptian strains of Serratia marcescens producing antibacterial and antioxidant prodigiosin pigment. Zagazig J. Agric. Res., 46 (5), 1573-1582.
Patel, K., Patel, S., Parekh, V., & Jha, S. (2016). Isolation and characterization of salt tolerant phosphate solubilizing Serratia marcescens isolated from coastal area. J. Pure Appl. Microbiol., 10 (3), 2401-2408.
Peekate, L. P. (2022). Deciphering the identity of bacterial isolates through conventional means: A practical guide. Edese Printing & Publishing Company, Port Harcourt, Nigeria, pp. 21-48.
Peekate, L. P., Abu, G. O., & Ogugbue, C. J. (2018). Investigating the effectiveness between using Pseudomonas fluorescens and its biosurfactant in bioremediation of petroleum hydrocarbon contaminated soil. Asian J. Biotechnol. Bioresour. Technol., 3 (2), 1-10. https://doi.org/10.9734/AJB2T/2018/40528
Peekate, L. P., Obediah, A. I., & Onunwo, M. (2023). Use of wastewater from legume cooking in bioremediation of crude-oil polluted soil. IIARD J. Biol. Genet. Res., 9 (1), 37-53. https://doi.org/10.56201/jbgr.v9.no1.2023.pg37.53
Romanowski, E. G., Lehner, K. M., Martin, N. C., Patel, K. R., Callaghan, J. D., Stella, N. A., & Shanks, R. M. Q. (2019). Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS. Polish J. Microbiol., 68 (1), 43–50. https://doi.org/10.21307/pjm-2019-005
Sharma, A., & Tiwari, R. (2005). Extracellular enzyme production by environmental strains of Serratia spp. isolated from river Narmada. Indian J. Biochem. Biophys., 42, 178-181.
Tahri, N., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. InTech. https://doi.org/10.5772/56194
Tao, A., Wang, T., Pang, F., Zheng, X., Ayra-Pardo, C., Huang, S., Xu, R., Liu, F., Li, J., Wei, Y., Wang, Z., Niu, Q., & Li, D. (2022). Characterization of a novel chitinolytic Serratia marcescens strain TC-1 with broad insecticidal spectrum. AMB Express, 12: 100. https://doi.org/10.1186/s13568-022-01442-6
Yan, Q., Robert, S., Brooks, J. P. Fong, & S. S. (2019). Metabolic characterization of the chitinolytic bacterium Serratia marcescens using a genome-scale metabolic model. BMC Bioinformatics 20: 227. https://doi.org/10.1186/s12859-019-2826-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lekiah Pedro Peekate, Jessica Mark Ogolo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.