Recent Advances in the Delivery, Mechanism of Action and Antibacterial Activity of Silver Nanoparticles
DOI:
https://doi.org/10.47430/ujmr.2493.013Keywords:
Anti-microbial resistance, Delivery, Mechanism of action, silver nanoparticlesAbstract
Study’s Novelty/Excerpt
- This study comprehensively review the significant advancements in the antimicrobial application of silver nanoparticles (AgNPs), focusing on innovative delivery mechanisms such as nanogels, liposomes, and polymer-based nanoparticles.
- It highlights the unique physicochemical properties of AgNPs that contribute to their antibacterial efficacy, including their ability to disrupt bacterial cell membranes and inhibit biofilm formation.
- The review also addresses the critical challenges of cytotoxicity and delivery method refinement, emphasizing the potential of AgNPs in combating antibiotic-resistant bacteria.
Full Abstract
Nanoparticles,especially silver nanoparticles (AgNPs), have revolutionized various fields like microbiology, biotechnology, pharmacy, and medicine owing to their distinct properties. This research delves into the significant potential of AgNPs in antimicrobial therapy, focusing on recent advancements in their delivery mechanisms, mechanisms of action, and antibacterial efficacy. The effective targeted delivery of AgNPs to specific body sites remains a challenge, leading to innovative approaches in nanotechnology. Nanogels, liposomes, and polymer-based nanoparticles have emerged as promising delivery systems, enhancing the stability, bioavailability, and controlled release of AgNPs. The antimicrobial activity of AgNPs is rooted in their unique physicochemical properties, such as high surface area and reactivity. They disrupt bacterial cell membranes, increasing permeability, causing cell death, and interfering with intracellular components. Additionally, AgNPs have shown potential in inhibiting biofilm formation, a common defense mechanism of bacteria against antibiotics. Despite their promise, addressing issues related to cytotoxicity and refining delivery methods remains imperative. This review comprehensively addresses the challenges associated with the delivery of AgNPs, their cytotoxic effects, and their efficacy against antibiotic-resistant bacteria, highlighting their mechanism of action in bacterial eradication and biofilm inhibition.
Downloads
References
Abdellatif, A. A. H., Khan, R. A., Alhowail, A. H., Alqasoumi, A., Sajid, S. M., Mohammed, A. M., Alsharidah, M., Rugaie, O. A., & Mousa, A. M. (2022). Octreotide-conjugated silver nanoparticles for active targeting of somatostatin receptors and their application in a nebulized rat model. Nanotechnology Reviews, 11(1), 266–283. https://doi.org/10.1515/ntrev-2022-0021
Abeer Mohammed, A. B., Abd Elhamid, M. M., Khalil, M. K. M., Ali, A. S., & Abbas, R. N. (2022). The potential activity of biosynthesized silver nanoparticles of Pseudomonas aeruginosa as an antibacterial agent against multidrug-resistant isolates from intensive care unit and anticancer agent. Environmental Sciences Europe, 34(1), 109. https://doi.org/10.1186/s12302-022-00684-2
Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A. C., & Ojha, S. C. (2023). Recent Approaches for Downplaying Antibiotic Resistance: Molecular Mechanisms. BioMed Research International, 2023, e5250040. https://doi.org/10.1155/2023/5250040
Aldakheel, F. M., Sayed, M. M. E., Mohsen, D., Fagir, M. H., & El Dein, D. K. (2023). Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels, 9(7), 530. https://doi.org/10.3390/gels9070530
Alfatemi, S., Fallah, F., Armin, S., Hafizi, M., Karimi, A., & Kalanaky, S. (2020). Evaluation of Blood and Liver Cytotoxicity and Apoptosis-necrosis Induced by Nanochelating Based Silver Nanoparticles in Mouse Model. Iranian Journal of Pharmaceutical Research : IJPR, 19, 207–218. https://doi.org/10.22037/IJPR.2020.1101026
Al-Momani, H., Almasri, M., Al Balawi, D., Hamed, S., Albiss, B. A., Aldabaibeh, N., Ibrahim, L., Albalawi, H., Al Haj Mahmoud, S., Khasawneh, A. I., Kilani, M., Aldhafeeri, M., Bani-Hani, M., Wilcox, M., Pearson, J., & Ward, C. (2023). The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Scientific Reports, 13, 8876. https://doi.org/10.1038/s41598-023-35919-6
Ameh, T., Gibb, M., Stevens, D., Pradhan, S. H., Braswell, E., & Sayes, C. M. (2022). Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. Nanomaterials, 12(14). https://doi.org/10.3390/nano12142402
Ameh, T., Zarzosa, K., Dickinson, J., Braswell, W. E., & Sayes, C. M. (2023). Nanoparticle surface stabilizing agents influence antibacterial action. Frontiers in Microbiology, 14. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1119550
Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M., & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769. https://doi.org/10.1016/j.mset.2020.09.002
Avire, N. J., Whiley, H., & Ross, K. (2021). A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens, 10(2), 248. https://doi.org/10.3390/pathogens10020248
Bano, N., Iqbal, D., Al Othaim, A., Kamal, M., Albadrani, H. M., Algehainy, N. A., Alyenbaawi, H., Alghofaili, F., Amir, M., & Roohi. (2023). Antibacterial efficacy of synthesized silver nanoparticles of Microbacterium proteolyticum LA2(R) and Streptomyces rochei LA2(O) against biofilm forming meningitis causing microbes. Scientific Reports, 13, 4150. https://doi.org/10.1038/s41598-023-30215-9
Bhatia, D., Mittal, A., & Malik, D. K. (2021). Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans. IET Nanobiotechnology, 15(4), 427–440. https://doi.org/10.1049/nbt2.12054
Bibens, L., Becker, J.-P., Dassonville-Klimpt, A., & Sonnet, P. (2023). A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs. Pharmaceuticals, 16(3), 425. https://doi.org/10.3390/ph16030425
Chandrakala, V., Aruna, V., & Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials, 5(6), 1593–1615. https://doi.org/10.1007/s42247-021-00335-x
Chen, Y., Sheng, F., Wang, X., Zhang, Z., Qi, S., & Chen, L. (2022). Early Epigenetic Responses in the Genomic DNA Methylation Fingerprints in Cells in Response to Sublethal Exposure of Silver Nanoparticles. Frontiers in Bioengineering and Biotechnology, 10, 927036. https://doi.org/10.3389/fbioe.2022.927036
Chen, Y., Zhang, C., Huang, Y., Ma, Y., Song, Q., Chen, H., Jiang, G., & Gao, X. (2024). Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Advanced Drug Delivery Reviews, 207, 115196. https://doi.org/10.1016/j.addr.2024.115196
da Cunha, K. F., Albernaz, D. T. F., Garcia, M. de O., Allend, S. O., & Hartwig, D. D. (2023). Silver nanoparticles (AgNPs) in the control of Staphylococcus spp. Letters in Applied Microbiology, 76(1), ovac032. https://doi.org/10.1093/lambio/ovac032
Dai, J., Wu, M., Wang, Q., Ding, S., Dong, X., Xue, L., Zhu, Q., Zhou, J., Xia, F., Wang, S., & Hong, Y. (2021). Red blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I: C) for enhanced tumoral photodynamic-immunotherapy. National Science Review, 8(6), nwab039. https://doi.org/10.1093/nsr/nwab039
Daphedar, A., & Taranath, T. C. (2018). Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicology Reports, 5, 910–918. https://doi.org/10.1016/j.toxrep.2018.08.018
de Araujo, M. M., Borgheti-Cardoso, L. N., Praça, F. G., Marcato, P. D., & Bentley, M. V. L. B. (2023). Solid Lipid–Polymer Hybrid Nanoplatform for Topical Delivery of siRNA: In Vitro Biological Activity and Permeation Studies. Journal of Functional Biomaterials, 14(7), 374. https://doi.org/10.3390/jfb14070374
Dighe, S., Jog, S., Momin, M., Sawarkar, S., & Omri, A. (2024). Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer’s Disease Management. Pharmaceutics, 16(1), Article 1. https://doi.org/10.3390/pharmaceutics16010058
Dilshad, E., Bibi, M., Sheikh, N., Tamrin, K., Mansoor, Q., Maqbool, Q., & Nawaz, M. (2020). Synthesis of Functional Silver Nanoparticles and Microparticles with Modifiers and Evaluation of Their Antimicrobial, Anticancer, and Antioxidant Activity. Journal of Functional Biomaterials, 11, 76. https://doi.org/10.3390/jfb11040076
Dove, A. S., Dzurny, D. I., Dees, W. R., Qin, N., Nunez Rodriguez, C. C., Alt, L. A., Ellward, G. L., Best, J. A., Rudawski, N. G., Fujii, K., & Czyż, D. M. (2023). Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Frontiers in Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fmicb.2022.1064095
Dryden, M. (2018). Reactive oxygen species: A novel antimicrobial. International Journal of Antimicrobial Agents, 51(3), 299–303. https://doi.org/10.1016/j.ijantimicag.2017.08.029
Du, H., Wang, X., Zhang, H., Chen, H., Deng, X., He, Y., Tang, H., Deng, F., & Ren, Z. (2023). Serum protein coating enhances the antisepsis efficacy of silver nanoparticles against multidrug-resistant Escherichia coli infections in mice. Frontiers in Microbiology, 14. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1153147
Dutt, Y., Pandey, R. P., Dutt, M., Gupta, A., Vibhuti, A., Raj, V. S., Chang, C.-M., & Priyadarshini, A. (2023). Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics, 12(1), 121. https://doi.org/10.3390/antibiotics12010121
Edis, Z., Wang, J., Waqas, M. K., Ijaz, M., & Ijaz, M. (2021). Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. International Journal of Nanomedicine, 16, 1313–1330. https://doi.org/10.2147/IJN.S289443
Ehsan, B., Haque, A., Qasim, M., Ali, A., & Sarwar, Y. (2023). High prevalence of extensively drug resistant and extended spectrum beta lactamases (ESBLs) producing uropathogenic Escherichia coli isolated from Faisalabad, Pakistan. World Journal of Microbiology & Biotechnology, 39(5), 132. https://doi.org/10.1007/s11274-023-03565-9
El-Ansary, A. E., Omran, A. A. A., Mohamed, H. I., & El-Mahdy, O. M. (2023). Green synthesized silver nanoparticles mediated by Fusarium nygamai isolate AJTYC1: Characterizations, antioxidant, antimicrobial, anticancer, and photocatalytic activities and cytogenetic effects. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29414-8
Elmowafy, M., Shalaby, K., Elkomy, M. H., Alsaidan, O. A., Gomaa, H. A. M., Abdelgawad, M. A., & Mostafa, E. M. (2023). Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers, 15(5), Article 5. https://doi.org/10.3390/polym15051123
Elumalai, K., Srinivasan, S., & Shanmugam, A. (2024). Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology, 5, 109–122. https://doi.org/10.1016/j.bmt.2023.09.001
Endale, H. T., Tesfaye, W., & Mengstie, T. A. (2023). ROS induced lipid peroxidation and their role in ferroptosis. Frontiers in Cell and Developmental Biology, 11. https://www.frontiersin.org/articles/10.3389/fcell.2023.1226044
Ernest, V., Gajalakshmi, S., Mukherjee, A., & Chandrasekaran, N. (2014a). Enhanced activity of lysozyme-AgNP conjugate with synergic antibacterial effect without damaging the catalytic site of lysozyme. Artificial Cells, Nanomedicine, and Biotechnology, 42(5), 336–343. https://doi.org/10.3109/21691401.2013.818010
Ernest, V., Gajalakshmi, S., Mukherjee, A., & Chandrasekaran, N. (2014b). Enhanced activity of lysozyme-AgNP conjugate with synergic antibacterial effect without damaging the catalytic site of lysozyme. Artificial Cells, Nanomedicine and Biotechnology, 42(5), 336–343. https://doi.org/10.3109/21691401.2013.818010
Faúndez, X., Báez, M. E., Martínez, J., Zúñiga-López, M. C., Espinoza, J., & Fuentes, E. (2023). Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chemistry, 426, 136561. https://doi.org/10.1016/j.foodchem.2023.136561
Ferdous, Z., & Nemmar, A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21(7), Article 7. https://doi.org/10.3390/ijms21072375
Fernandes, M., González-Ballesteros, N., da Costa, A., Machado, R., Gomes, A. C., & Rodríguez-Argüelles, M. C. (2023). Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts. JBIC Journal of Biological Inorganic Chemistry, 28(4), 439–450. https://doi.org/10.1007/s00775-023-01999-y
Fontoura, I., Veriato, T. S., Raniero, L. J., & Castilho, M. L. (2023). Analysis of Capped Silver Nanoparticles Combined with Imipenem against Different Susceptibility Profiles of Klebsiella pneumoniae. Antibiotics, 12(3), Article 3. https://doi.org/10.3390/antibiotics12030535
Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J., & Blaskovich, M. A. T. (2023). Metals to combat antimicrobial resistance. Nature Reviews Chemistry, 7(3), 202–224. https://doi.org/10.1038/s41570-023-00463-4
Guo, H., Zhang, J., Boudreau, M., Meng, J., Yin, J., Liu, J., & Xu, H. (2016). Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Particle and Fibre Toxicology, 13. https://doi.org/10.1186/s12989-016-0133-9
Habibi, N., Mauser, A., Ko, Y., & Lahann, J. (2022). Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Advanced Science, 9(8), 2104012. https://doi.org/10.1002/advs.202104012
Halkai, K. R., Mudda, J. A., Shivanna, V., Patil, V., Rathod, V., & Halkai, R. (2019). Cytotoxicity evaluation of fungal-derived silver nanoparticles on human gingival fibroblast cell line: An in vitro study. Journal of Conservative Dentistry : JCD, 22(2), 160–163. https://doi.org/10.4103/JCD.JCD_518_18
Hublikar, L. V., Ganachari, S. V., Patil, V. B., Nandi, S., & Honnad, A. (2023). Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Progress in Biomaterials, 12, 155–169. https://doi.org/10.1007/s40204-023-00219-9
Jain, A., Garrett, N. T., & Malone, Z. P. (2022). Ruthenium‐based Photoactive Metalloantibiotics †. Photochemistry and Photobiology, 98(1), 6–16. https://doi.org/10.1111/php.13435
Jayachandran, P., Ilango, S., Suseela, V., Nirmaladevi, R., Shaik, M. R., Khan, M., Khan, M., & Shaik, B. (2023). Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis. Biomedicines, 11(1), 217. https://doi.org/10.3390/biomedicines11010217
Kadir, N. H. A., Khan, A. A., Kumaresan, T., Khan, A. U., & Alam, M. (2024). The impact of pumpkin seed-derived silver nanoparticles on corrosion and cytotoxicity: A molecular docking study of the simulated AgNPs. Green Chemistry Letters and Reviews. https://www.tandfonline.com/doi/abs/10.1080/17518253.2024.2319246
Kah, G., Chandran, R., & Abrahamse, H. (2023). Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells, 12(15), 2012. https://doi.org/10.3390/cells12152012
Kakian, F., Mirzaei, E., Moattari, A., Takallu, S., & Bazargani, A. (2024). Determining the cytotoxicity of the Minimum Inhibitory Concentration (MIC) of silver and zinc oxide nanoparticles in ESBL and carbapenemase producing Proteus mirabilis isolated from clinical samples in Shiraz, Southwest Iran. BMC Research Notes, 17(1), 40. https://doi.org/10.1186/s13104-023-06402-2
Kanimozhi, S., Durga, R., Sabithasree, M., Kumar, A. V., Sofiavizhimalar, A., Kadam, A. A., Rajagopal, R., Sathya, R., & Azelee, N. I. W. (2022). Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study. Journal of King Saud University - Science, 34(4), 101930. https://doi.org/10.1016/j.jksus.2022.101930
Kaukab, A., Gaur, S., Agnihotri, R., & Taneja, V. (2023). Silver Nanoparticles as an Intracanal Medicament: A Scoping Review. The Scientific World Journal, 2023, 9451685. https://doi.org/10.1155/2023/9451685
Kim, S.-M., Choi, H.-J., Lim, J.-A., Woo, M.-A., Chang, H.-J., Lee, N., & Lim, M.-C. (2023). Biosynthesis of Silver Nanoparticles from Duchesnea indica Extracts Using Different Solvents and Their Antibacterial Activity. Microorganisms, 11(6), Article 6. https://doi.org/10.3390/microorganisms11061539
Klein, W., Ismail, E., Maboza, E., Hussein, A. A., & Adam, R. Z. (2023). Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications. Journal of Functional Biomaterials, 14(7), 379. https://doi.org/10.3390/jfb14070379
Kora, A. J., & Sashidhar, R. B. (2015). Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: A comparative study. The Journal of Antibiotics, 68(2), Article 2. https://doi.org/10.1038/ja.2014.114
Kumar, L., Bisen, M., Harjai, K., Chhibber, S., Azizov, S., Lalhlenmawia, H., & Kumar, D. (2023). Advances in Nanotechnology for Biofilm Inhibition. ACS Omega, 8(24), 21391–21409. https://doi.org/10.1021/acsomega.3c02239
Lan, Y., Zhou, M., Li, X., Liu, X., Li, J., & Liu, W. (2022). Preliminary Investigation of Iron Acquisition in Hypervirulent Klebsiella pneumoniae Mediated by Outer Membrane Vesicles. Infection and Drug Resistance, 15. https://doi.org/10.2147/IDR.S342368
Li, H., Zhou, X., Huang, Y., Liao, B., Cheng, L., & Ren, B. (2021). Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Frontiers in Microbiology, 11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.622534
Li, J., Zhang, B., Chang, X., Gan, J., Li, W., Niu, S., Kong, L., Wu, T., Zhang, T., Tang, M., & Xue, Y. (2020). Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environmental Pollution, 256, 113430. https://doi.org/10.1016/j.envpol.2019.113430
Li, N., Zhu, S., Wen, C., Xu, H., Li, C., Zhu, S., Li, R., Chen, L., & Luo, X. (2023). The uptake, elimination, and toxicity of silver nanoparticles and silver ions in single-species and natural mixed-species bacterial biofilms. Journal of Water Process Engineering, 56, 104256. https://doi.org/10.1016/j.jwpe.2023.104256
Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020449
Lohans, C. T., Freeman, E. I., Groesen, E. van, Tooke, C. L., Hinchliffe, P., Spencer, J., Brem, J., & Schofield, C. J. (2019). Mechanistic Insights into β-Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-49264-0
Lotfipour, F., Shahi, S., Farjami, A., Salatin, S., Mahmoudian, M., & Dizaj, S. M. (2021). Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BioMed Research International, 2021, 9322282. https://doi.org/10.1155/2021/9322282
Mahmod, W. S., & Al-Jumaili, E. F. (2022). Pharmaceutical Nano-Delivery Systems: A Review. Indian Journal of Forensic Medicine & Toxicology, 16(2), 433–439. https://doi.org/10.37506/ijfmt.v16i2.18017
Mali, R., & Patil, J. (2023). Nanoparticles: A Novel Antifungal Drug Delivery System. Materials Proceedings, 14(1), Article 1. https://doi.org/10.3390/IOCN2023-14513
Malik, S., Muhammad, K., & Waheed, Y. (2023a). Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules, 28(18), 6624. https://doi.org/10.3390/molecules28186624
Malik, S., Muhammad, K., & Waheed, Y. (2023b). Nanotechnology: A Revolution in Modern Industry. Molecules, 28(2), 661. https://doi.org/10.3390/molecules28020661
Mammari, N., Lamouroux, E., Boudier, A., & Duval, R. E. (2022). Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms, 10(2), Article 2. https://doi.org/10.3390/microorganisms10020437
Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S.-K. (2013). Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, e287638. https://doi.org/10.1155/2013/287638
Mao, B.-H., Chen, Z.-Y., Wang, Y.-J., & Yan, S.-J. (2018). Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports, 8, 2445. https://doi.org/10.1038/s41598-018-20728-z
Mathur, P., Jha, S., Ramteke, S., & Jain, N. K. (2018). Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 115–126. https://doi.org/10.1080/21691401.2017.1414825
Mauri, E., & Scialla, S. (2023). Nanogels Based on Hyaluronic Acid as Potential Active Carriers for Dermatological and Cosmetic Applications. Cosmetics, 10(4), Article 4. https://doi.org/10.3390/cosmetics10040113
McNeilly, O., Mann, R., Hamidian, M., & Gunawan, C. (2021). Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Frontiers in Microbiology, 12. https://www.frontiersin.org/articles/10.3389/fmicb.2021.652863
Meesaragandla, B., Hayet, S., Fine, T., Janke, U., Chai, L., & Delcea, M. (2022). Inhibitory Effect of Epigallocatechin Gallate-Silver Nanoparticles and Their Lysozyme Bioconjugates on Biofilm Formation and Cytotoxicity. ACS Applied Bio Materials, 5(9), 4213–4221. https://doi.org/10.1021/acsabm.2c00409
Mikhailova, E. O. (2020). Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084
Modi, S. K., Gaur, S., Sengupta, M., & Singh, M. S. (2023). Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Frontiers in Microbiology, 14. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1135579
More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., & Galdiero, M. (2023a). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020369
More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., & Galdiero, M. (2023b). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), Article 2. https://doi.org/10.3390/microorganisms11020369
Nakamura, Y., Mochida, A., Choyke, P. L., & Kobayashi, H. (2016). Nano-drug delivery: Is the enhanced permeability and retention (EPR) effect sufficient for curing cancer? Bioconjugate Chemistry, 27(10), 2225–2238. https://doi.org/10.1021/acs.bioconjchem.6b00437
Nallanthighal, S., Chan, C., Murray, T. M., Mosier, A. P., Cady, N. C., & Reliene, R. (2017). Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice. Nanotoxicology, 11(8), 996–1011. https://doi.org/10.1080/17435390.2017.1388863
Nandhini, S. N., Sisubalan, N., Vijayan, A., Karthikeyan, C., Gnanaraj, M., Gideon, D. A. M., Jebastin, T., Varaprasad, K., & Sadiku, R. (2023). Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon, 9(2), e13128. https://doi.org/10.1016/j.heliyon.2023.e13128
Nikolova, S., Milusheva, M., Gledacheva, V., Feizi-Dehnayebi, M., Kaynarova, L., Georgieva, D., Delchev, V., Stefanova, I., Tumbarski, Y., Mihaylova, R., Cherneva, E., Stoencheva, S., & Todorova, M. (2023). Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines, 11(8), Article 8. https://doi.org/10.3390/biomedicines11082201
Noga, M., Milan, J., Frydrych, A., & Jurowski, K. (2023). Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. International Journal of Molecular Sciences, 24(6), Article 6. https://doi.org/10.3390/ijms24065133
Olugbodi, J. O., Lawal, B., Bako, G., Onikanni, A. S., Abolenin, S. M., Mohammud, S. S., Ataya, F. S., & Batiha, G. E.-S. (2023). Effect of sub-dermal exposure of silver nanoparticles on hepatic, renal and cardiac functions accompanying oxidative damage in male Wistar rats. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-37178-x
Ozdal, M., & Gurkok, S. (2022). Recent advances in nanoparticles as antibacterial agent. ADMET & DMPK, 10(2), 115. https://doi.org/10.5599/admet.1172
Paladini, F., & Pollini, M. (2019). Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials, 12(16), 2540. https://doi.org/10.3390/ma12162540
Pareek, V., Devineau, S., Sivasankaran, S. K., Bhargava, A., Panwar, J., Srikumar, S., & Fanning, S. (2021). Silver Nanoparticles Induce a Triclosan-Like Antibacterial Action Mechanism in Multi-Drug Resistant Klebsiella pneumoniae. Frontiers in Microbiology, 12, 638640. https://doi.org/10.3389/fmicb.2021.638640
Park, H.-Y., Chung, C., Eiken, M. K., Baumgartner, K. V., Fahy, K. M., Leung, K. Q., Bouzos, E., Asuri, P., Wheeler, K. E., & Riley, K. R. (2023). Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Frontiers in Toxicology, 5. https://www.frontiersin.org/articles/10.3389/ftox.2023.1081753
Parveen, A., Kulkarni, N., Yalagatti, M., Abbaraju, V., & Deshpande, R. (2018). In vivo efficacy of biocompatible silver nanoparticles cream for empirical wound healing. Journal of Tissue Viability, 27(4), 257–261. https://doi.org/10.1016/j.jtv.2018.08.007
Rajivgandhi, G., Chelliah, C. K., Ramachandran, G., Chackaravarthi, G., Maruthupandy, M., Alharbi, N. S., Kadaikunnan, S., Natesan, M., Li, W.-J., & Quero, F. (2023). Morphological modification of silver nanoparticles against multi-drug resistant gram-negative bacteria and cytotoxicity effect in A549 lung cancer cells through in vitro approaches. Archives of Microbiology, 205(8), 282. https://doi.org/10.1007/s00203-023-03611-y
Rajora, N., Kaushik, S., Jyoti, A., & Kothari, S. L. (2016). Rapid synthesis of silver nanoparticles by Pseudomonas stutzeri isolated from textile soil under optimised conditions and evaluation of their antimicrobial and cytotoxicity properties. IET Nanobiotechnology, 10(6), 367–373. https://doi.org/10.1049/iet-nbt.2015.0107
Rybka, M., Mazurek, Ł., & Konop, M. (2022). Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing—From Experimental Studies to Clinical Practice. Life, 13(1), 69. https://doi.org/10.3390/life13010069
Saghafi, Y., Baharifar, H., Najmoddin, N., Asefnejad, A., Maleki, H., Sajjadi-Jazi, S. M., Bonkdar, A., Shams, F., & Khoshnevisan, K. (2023). Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels, 9(8), Article 8. https://doi.org/10.3390/gels9080672
Sahoo, B., Panigrahi, L. L., Jena, S., Jha, S., & Arakha, M. (2023). Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Advances, 13(17), 11406–11414. https://doi.org/10.1039/D2RA07827A
Scandorieiro, S., Teixeira, F. M. M. B., Nogueira, M. C. L., Panagio, L. A., de Oliveira, A. G., Durán, N., Nakazato, G., & Kobayashi, R. K. T. (2023). Antibiofilm Effect of Biogenic Silver Nanoparticles Combined with Oregano Derivatives against Carbapenem-Resistant Klebsiella pneumoniae. Antibiotics, 12(4), Article 4. https://doi.org/10.3390/antibiotics12040756
Selem, E., Mekky, A. F., Hassanein, W. A., Reda, F. M., & Selim, Y. A. (2022). Antibacterial and antibiofilm effects of silver nanoparticles against the uropathogen Escherichia coli U12. Saudi Journal of Biological Sciences, 29(11), 103457. https://doi.org/10.1016/j.sjbs.2022.103457
Shi, T., Sun, X., & He, Q.-Y. (2018). Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells. Current Protein & Peptide Science, 19(6), 525–536. https://doi.org/10.2174/1389203718666161108092149
Shukla, R. K., Badiye, A., Vajpayee, K., & Kapoor, N. (2021). Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Frontiers in Genetics, 12, 728250. https://doi.org/10.3389/fgene.2021.728250
Siddique, M. H., Aslam, B., Imran, M., Ashraf, A., Nadeem, H., Hayat, S., Khurshid, M., Afzal, M., Malik, I. R., Shahzad, M., Qureshi, U., Khan, Z. U. H., & Muzammil, S. (2020). Effect of Silver Nanoparticles on Biofilm Formation and EPS Production of Multidrug-Resistant Klebsiella pneumoniae. BioMed Research International, 2020, e6398165. https://doi.org/10.1155/2020/6398165
Sultana, A., Zare, M., Thomas, V., Kumar, T. S. S., & Ramakrishna, S. (2022). Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery, 15, 100134. https://doi.org/10.1016/j.medidd.2022.100134
Takáč, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., & Takáčová, G. (2023). The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life, 13(2), 466. https://doi.org/10.3390/life13020466
Tiwari, H., Rai, N., Singh, S., Gupta, P., Verma, A., Singh, A. K., Kajal, Salvi, P., Singh, S. K., & Gautam, V. (2023). Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering, 10(7), 760. https://doi.org/10.3390/bioengineering10070760
Todorova, M., Milusheva, M., Kaynarova, L., Georgieva, D., Delchev, V., Simeonova, S., Pilicheva, B., & Nikolova, S. (2023). Drug-Loaded Silver Nanoparticles—A Tool for Delivery of a Mebeverine Precursor in Inflammatory Bowel Diseases Treatment. Biomedicines, 11(6), Article 6. https://doi.org/10.3390/biomedicines11061593
Tverezovska, O., Holubnycha, V., Banasiuk, R., Husak, Y., Anton, S., & Korniienko, V. (2022). The Effect of Silver Nanoparticles Against Formation of Enterococcus Faecalis Biofilms. 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), NRA12-1-NRA12-5. https://doi.org/10.1109/NAP55339.2022.9934155
Veerapandian, M., Ramasundaram, S., Jerome, P., Chellasamy, G., Govindaraju, S., Yun, K., & Oh, T. H. (2023). Drug Delivery Application of Functional Nanomaterials Synthesized Using Natural Sources. Journal of Functional Biomaterials, 14(8), 426. https://doi.org/10.3390/jfb14080426
Veriato, T. S., Fontoura, I., Oliveira, L. D., Raniero, L. J., & Castilho, M. L. (2023). Nano-antibiotic based on silver nanoparticles functionalized to the vancomycin–cysteamine complex for treating Staphylococcus aureus and Enterococcus faecalis. Pharmacological Reports, 75(4), 951–961. https://doi.org/10.1007/s43440-023-00491-3
Wasilewska, A., Klekotka, U., Zambrzycka, M., Zambrowski, G., Święcicka, I., & Kalska-Szostko, B. (2023). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chemistry, 400, 133960. https://doi.org/10.1016/j.foodchem.2022.133960
Wieler, L., Vittos, O., Mukherjee, N., & Sarkar, S. (2023). Reduction in the COVID-19 pneumonia case fatality rate by silver nanoparticles: A randomized case study. Heliyon, 9(3), e14419. https://doi.org/10.1016/j.heliyon.2023.e14419
Xu, Y., Li, H., Li, X., & Liu, W. (2023). What happens when nanoparticles encounter bacterial antibiotic resistance? Science of The Total Environment, 876, 162856. https://doi.org/10.1016/j.scitotenv.2023.162856
Yao, C., Zhang, D., Wang, H., & Zhang, P. (2023). Recent Advances in Cell Membrane Coated-Nanoparticles as Drug Delivery Systems for Tackling Urological Diseases. Pharmaceutics, 15(7), Article 7. https://doi.org/10.3390/pharmaceutics15071899
Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C., & Fang, J.-Y. (2020). Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Frontiers in Chemistry, 8. https://www.frontiersin.org/articles/10.3389/fchem.2020.00286
Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764
Zachar, O. (2020). Formulations for COVID-19 Early Stage Treatment via Silver Nanoparticles Inhalation Delivery at Home and Hospital. ScienceOpen Preprints. https://doi.org/10.14293/S2199-1006.1.SOR-.PPHBJEO.v1
Zachar, O. (2022). Nanomedicine formulations for respiratory infections by inhalation delivery: Covid-19 and beyond. Medical Hypotheses, 159, 110753. https://doi.org/10.1016/j.mehy.2021.110753
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 UMYU Journal of Microbiology Research (UJMR)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.