Assessment of Combined Effects of Selenium and Cadmium on Antioxidant Activity of Enzymes Produced by Citrobacter freundii

Authors

  • Salihu, M. I. Department of Life Sciences, School of Technology, Kano State Polytechnic Kano Nigeria https://orcid.org/0000-0002-7535-4140
  • Habeeb, M. M. Department of Pharmaceutical Technology, School of Technology, Kano State Polytechnic Kano Nigeria
  • Ado, S. H. Department of Biochemistry, Faculty of Basic Medical Sciences, Yusuf Maitama Sule University Kano, Nigeria

DOI:

https://doi.org/10.47430/ujmr.2493.019

Keywords:

Citrobacter freundii, selenium, cadmium, antioxidant enzymes, protein

Abstract

Study’s Novelty/Excerpt

  • This study is novel in demonstrating the differential effects of cadmium (Cd) and selenium (Se) on Citrobacter freundii, specifically highlighting the mitigation of Cd toxicity by Se addition.
  • The research reveals that while Cd concentrations above 40 ppm hinder bacterial growth and significantly reduce protein content, Se addition alleviates these detrimental effects, reducing the protein content decline and antioxidant enzyme activities.
  • This work provides new insights into the interplay between heavy metal toxicity and antioxidant defenses in bacteria, suggesting potential biotechnological applications for managing Cd contamination.

Full Abstract

In this study, Citrobacter freundii (NRRL B-2643) bacteria were cultured in an LB medium with different cadmium (Cd) concentrations.  To mitigate the deleterious impact of Cd, varying quantities of selenium (Se), renowned for its antioxidative power, were added to the cadmium-containing growth medium.  Bacterial concentration, soluble protein, and activities of antioxidant enzymes (Glutathione peroxidase (GSH-Px), Glutathione reductase (GSH-Red), Superoxide dismutase (SOD), and Catalase (CAT) were determined by spectrophotometer.  No significant microorganism growth was observed at 150 ppm and higher Cd concentrations.  However, the bacterial growth was not affected up to 40 ppm Cd concentration.  Bacteria were grown in media containing 0, 75, 100, and 125 ppm Cd, where the 0-ppm cadmium group served as control.  The protein content of the microorganism grown in the medium containing 75, 100, and 125 ppm Cd decreased about 21, 40, and 62 percent, respectively, compared to the control.  When 3.0 ppm selenium was added to the same growth medium, the percentage decrease in protein amount compared to the control was 12, 25, and 50, respectively.  Compared to the control, an increase in the antioxidant enzyme activities in bacteria grown in cadmium-containing media was observed (p<0.05).  With the addition of 1.0 and 3.0 ppm selenium to cadmium-containing media, a decrease was observed in the activities of antioxidant enzymes.

Downloads

Download data is not yet available.

References

Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A. (2023). Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics, 11(7), 580. https://doi.org/10.3390/toxics11070580

Adwas, A., Elsayed, A., Azab, A., and Quwaydir, F. (2019). Oxidative stress and antioxidant mechanisms in human body, J. Appl. Biotechnol. Bioeng, C 6, 43. https://doi.org/10.15406/jabb.2019.06.00173

Akonaç M.C., &Boysan C.S. (2023). Selenium Alleviates the Toxic Effects of Cadmium in Lupine (Lupinus albus L.) Pol. J. Environ. Stud. Vol. 32(2), 1025-1036. https://doi.org/10.15244/pjoes/156416

Araúz, I.L.C., Afton, S., Wrobel, K., Caruso, J.A., Corona, J.F.G., and Wrobel, K. (2008). Study on the protective role of selenium against cadmium toxicity in lactic acid bacteria: An advanced application of ICP-MS, Journal of hazardous materials, C 153, 1157-1164. https://doi.org/10.1016/j.jhazmat.2007.09.075

Awan, S. A., Ilyas, N., Khan, I., Raza, M. A., Rehman, A. U., Rizwan, M., Rastogi, A., Tariq, R., &Brestic, M. (2020). Bacillus siamensis Reduces Cadmium Accumulation and Improves Growth and Antioxidant Defense System in Two Wheat (Triticum aestivum L.) Varieties. Plants (Basel, Switzerland), 9(7), 878. https://doi.org/10.3390/plants9070878

Banerjee, G., Pandey, S., Ray, A.K., and Kumar, R., (2015). Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloaca and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water, Air, & Soil Pollution, 226, 1-9. https://doi.org/10.1007/s11270-015-2359-9

Bing Ma, Wenlong Song, Xiaoxiao Zhang, Mengxin Chen, Jiapeng Li, Xiaoqian Yang, Lei Zhang (2023). Potential application of novel cadmium-tolerant bacteria in bioremediation of Cd-contaminated soil, Ecotoxicology and Environmental Safety, Volume 255, 114766, ISSN 0147-6513. https://doi.org/10.1016/j.ecoenv.2023.114766

Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense, World Allergy Organization Journal, C 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613

Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. (2023). Cadmium Toxicity and Health Effects-A Brief Summary. Molecules, 28, 6620. https://doi.org/10.3390/molecules28186620

Cheng, J., Qiu, H., Chang, Z., Jiang, Z., and Yin, W. (2016). The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus, 5, 1-8. https://doi.org/10.1186/s40064-016-2963-1

Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free radical biology & medicine, 95, 27-42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

Dzobo K, &Naik YS. (2013). Effect of selenium on cadmium-induced oxidative stress and esterase activity in rat organs. S Afr J Sci.;109(5/6). https://doi.org/10.1590/sajs.2013/965

Feng, R., Wei, C., and Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87, 58-68. https://doi.org/10.1016/j.envexpbot.2012.09.002

Flemming, H. C., &Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature reviews. Microbiology, 17(4), 247-260. https://doi.org/10.1038/s41579-019-0158-9

Ge J, Liu LL, Cui ZG, Talukder M, Lv MW, &Li JY (2021). Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome. Ecotoxicol Environ Saf. 215:112135. https://doi.org/10.1016/j.ecoenv.2021.112135

Güner, U., (2010). Heavy metal effects on P, Ca, Mg, and total protein contents in embryonic pleopodal eggs and stage-1 juveniles of freshwater crayfish Astacusleptodactylus (Eschscholtz, 1823). Turkish Journal of Biology, 34, 405-412. https://doi.org/10.3906/biy-0811-19

Hadwan, M. H., Hussein, M. J., Mohammed, R. M., Hadwan, A. M., Saad Al-Kawaz, H., Al-Obaidy, S. S. M., & Al Talebi, Z. A. (2024). An improved method for measuring catalase activity in biological samples. Biology methods & protocols, 9(1), bpae015. https://doi.org/10.1093/biomethods/bpae015

Han, D., Xiong, S. L., Tu, S. X., Liu, J. C., and Chen, C. (2015). Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ. Exp. Bot. 117, 12-19. https://doi.org/10.1016/j.envexpbot.2015.04.008

Ibrahim, M. S., Cakmak, M., Ozer, D., Karataş, F., and Sinan S. (2021). The effect of selenium on the vitamin content and stress biomarkers on the stress induced by cadmium in Citrobacter freundii. Firat university journal of engineering, 33(2), 697-707.

Ibrahim, M. S., Çakmak, M., Özer, D., Karataş, F., and Sinan S. (2022). Effect of Cadmium and Vitamin C on Citrobacter Freundii's Antioxidant Enzymes and Stress Markers. AfyonKocatepe University journal of science and engineering 22(1), 23-32. https://doi.org/10.35414/akufemubid.1007756

Jing Ge, Li-Li Liu, Zheng-Guo Cui, Milton Talukder, Mei-Wei Lv, Jin-Yang Li, Jin-Long Li, (2021). Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome, Ecotoxicology and Environmental Safety, 215, 112135, ISSN0147-6513. https://doi.org/10.1016/j.ecoenv.2021.112135

Kıran, T., Otlu, O. & Karabulut, A. (2023). Oxidative stress and antioxidants in health and disease. Journal of Laboratory Medicine, 47(1), 1-11. https://doi.org/10.1515/labmed-2022-0108

Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K., and Jha, B. (2012). Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol. Biochem. 51, 129-138. https://doi.org/10.1016/j.plaphy.2011.10.016

Lin, L., Zhou, W. H., Dai, H. X., Cao, F. B., Zhang, G. P., and Wu, F. B. (2012). Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 235, 343-351. https://doi.org/10.1016/j.jhazmat.2012.08.012

Ling-Li, L, Yin-Hua, C, Li-Ya, L, You-Lin, L, Chun-Jie, Z, Li-Jiao, T, Wen-Wei, L, Xing, Z, Hao C, Jing-Yuan M, Jian C, Zhong-Hua T, and Han-Qing Y, (2019). Selenium Stimulates Cadmium Detoxification in Caenorhabditis elegans through Thiols-Mediated Nanoparticles Formation and Secretion. Environmental Science & Technology 53 (5), 2344-2352.

Lu, Y., Fu, TJ. (2020). Performance of Commercial Colorimetric Assays for Quantitation of Total Soluble Protein in Thermally Treated Milk Samples. Food Anal. Methods 13, 1337-1345. https://doi.org/10.1007/s12161-020-01748-w

Luo, Y., Wei, Y., Sun, S., Wang, J., Wang, W., Han, D., Shao, H., Jia, H., & Fu, Y. (2019). Selenium Modulates the Level of Auxin to Alleviate the Toxicity of Cadmium in Tobacco. International journal of molecular sciences, 20(15), 3772. https://doi.org/10.3390/ijms20153772

Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., and Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 77, 242-248. https://doi.org/10.1016/j.envexpbot.2011.12.001

Méplan, C., & Hughes, D. J. (2020). The Role of Selenium in Health and Disease: Emerging and Recurring Trends. Nutrients, 12(4), 1049. https://doi.org/10.3390/nu12041049

Mnkandla, S. M., Basopo, N., &Siwela, A. H. (2019). The Effect of Persistent Heavy Metal Exposure on Some Antioxidant Enzyme Activities and Lipid Peroxidation of the Freshwater snail, Lymnaeanatalensis. Bulletin of environmental contamination and toxicology, 103(4), 551-558. https://doi.org/10.1007/s00128-019-02693-z

Nafiu, S. A., Usman, L. U., Mohammed, J. M., Alkali, Z. D and Ibrahim, A. A. (2022). Oxidative Stress Biomarkers Activities and Histological Changes in African Catfish (Clariasgariepinus) Exposed to Carwash Wastewater. UMYU Scientifica, 1(1), 49 - 59. https://doi.org/10.56919/usci.1122.008

Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative medicine and cellular longevity, 9613090. https://doi.org/10.1155/2019/9613090

Njenga, R., Boele, J., Öztürk, Y., & Koch, H. G. (2023). Coping with stress: How bacteria fine-tune protein synthesis and protein transport. The Journal of biological chemistry, 299(9), 105163. https://doi.org/10.1016/j.jbc.2023.105163

Okonji, S.O.; Achari, G.; Pernitsky, D. (2021). Environmental Impacts of Selenium Contamination: A Review on Current-Issues and Remediation Strategies in an Aqueous System. Water, 13, 1473. https://doi.org/10.3390/w13111473

Ozoani, H., Ezejiofor, A. N., Okolo, K. O., Orish, C. N., Cirovic, A., Cirovic, A., &Orisakwe, O. E. (2024). Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways. Environmental toxicology, 39(1), 156-171. https://doi.org/10.1002/tox.23966

Pandey, S., Barai, P.K. and Maiti, T.K., (2013). Influence of heavy metals on the activity of antioxidant enzymes in the metal resistant strains of Ochrobactrum and Bacillus sp., Journal of environmental biology, 34, 1033-1037.

Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. (2022). Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int. J. Mol. Sci., 23, 5031. https://doi.org/10.3390/ijms23095031

Ramírez-Acosta S, Uhlírová R, Navarro F, Gómez-Ariza JL and García-Barrera T (2022). Antagonistic Interaction of Selenium and Cadmium in Human Hepatic Cells Through Selenoproteins. Front. Chem. 10:891933. https://doi.org/10.3389/fchem.2022.891933

Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S., & Aaron, J. J. (2020). Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental science and pollution research international, 27(24), 29927-29942. https://doi.org/10.1007/s11356-020-09354-3

Schwarz M, Lossow K, Kopp JF, Schwerdtle T, &Kipp AP(2019). Crosstalk of Nrf2 with the trace elements selenium, Iron, Zinc, and copper. Nutrients. 11:1-18. https://doi.org/10.3390/nu11092112

Sharma, J. and Fulekar, M. (2009). Potential of Citrobacter freundii for bioaccumulation ofheavy metal-copper, Biology and Medicine, C 1, 7-14.

Shim, S. Y., & Kim, H. S. (2013). Oxidative stress and the antioxidant enzyme system in the developing brain. Korean journal of pediatrics, 56(3), 107-111. https://doi.org/10.3345/kjp.2013.56.3.107

Thompson, L.J., Gray, V., Lindsay, D., & Von Holy, A. (2006). Carbon: nitrogen: phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. Journal of Applied Microbiology, 101(5), 1105-1113. https://doi.org/10.1111/j.1365-2672.2006.03003.x

Wang, J., Chang, S., Chen, Y. and Luh, K., (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. Journal of Microbiology, Immunology and Infection, 33,258-262.

Wu Z, Yin X, Bañuelos GS, Lin Z-Q, Liu Y, Li M and Yuan L (2016) Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.). Front. Plant Sci. 7:1875. https://doi.org/10.3389/fpls.2016.01875

Ying Wang, Robyn Branicky, Alycia Noë, & Siegfried Hekimi; (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J CellBiol, 217 (6): 1915-1928. https://doi.org/10.1083/jcb.201708007

Zoidis, E., Seremelis, I., Kontopoulos, N., &Danezis, G. P. (2018). Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel, Switzerland), 7(5), 66. https://doi.org/10.3390/antiox7050066

Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, &Shahzad B (2023). Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. Plants. 12(17):3147. https://doi.org/10.3390/plants12173147

Zwolak, I. (2020). The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature, Biological Trace Element Research, C 193, 44-63. https://doi.org/10.1007/s12011-019-01691-w

Downloads

Published

29-06-2024

How to Cite

Salihu, M. I., Habeeb, M. M., & Ado, S. H. (2024). Assessment of Combined Effects of Selenium and Cadmium on Antioxidant Activity of Enzymes Produced by Citrobacter freundii. UMYU Journal of Microbiology Research (UJMR), 162–172. https://doi.org/10.47430/ujmr.2493.019