Occurrence of Extended Spectrum Beta-Lactamase Producing E. coli in some Ready-to-Eat Foods sold in Akure, Ondo State, Nigeria
DOI:
https://doi.org/10.47430/ujmr.2492.021Keywords:
Antibiotics, Resistance, Esherichia coli, Extended Spectrum Beta-Lactamase (ESBL), Ready-to-Eat (RTE) foods, Foodborne illnessAbstract
Study’s Excerpt:
- This study assessed bacterial contamination and antibiotic resistance in ready-to-eat foods in Akure.
- A total of 416 food samples underwent culture, biochemical, and molecular analyses, including PCR.
- Escherichia coli, including 68.42% ESBL strains, was most prevalent in meat (44.44%) and rice (21.05%).
- Resistance profiling showed high resistance to fluoroquinolones, beta-lactams, and tetracycline.
- Findings highlight public health risks, urging stricter food safety policies and antimicrobial control.
Full Abstract:
This study investigated bacterial contamination and antibiotic resistance in ready-to-eat (RTE) foods sold by local vendors in Akure, Ondo State, Nigeria. A total of 416 food samples, including rice, beans, meat pies, and snacks, were analyzed for pathogenic bacteria. Escherichia coli (E. coli), including strains like Enterotoxigenic E. coli (ETEC) and Shiga-toxin-producing E. coli O157:H7, was among the most isolated contaminants, particularly from meat samples. Across all samples, 100% bacterial contamination was observed, with additional pathogens such as Staphylococcus aureus, Bacillus spp., and Streptococcus spp. playing a significant role. Notably, 68.42% of the E. coli isolates were found to produce Extended Spectrum Beta-Lactamase (ESBL), conferring significant resistance to beta-lactam antibiotics. Resistance to other antibiotics such as clotrimazole, tetracycline, and amoxicillin was widespread, though isolates remained sensitive to ofloxacin and nalidixic acid. These findings underscore the persistent public health risk of foodborne illnesses, driven by poor hygiene practices and rising antimicrobial resistance. The study emphasizes the need for molecular characterization, advanced biochemical systems like API and VITEK for accurate pathogen identification, stricter food safety regulations, and responsible antibiotic use to curb the threat of antimicrobial resistance in foodborne pathogens.
Downloads
References
Adeluwoye-Ajayi, O. A., Thomas, F. M., & Awoniyi, R. R. (2021). Detection of Extended Spectrum Beta-Lactamase Production in Escherichia coli Isolated from Cattle Faeces in Owo Metropolis. International Journal of Pathogen Research, 8(4), 32–39. https://doi.org/10.9734/ijpr/2021/v8i430212
Andersson, D. I., & Hughes, D. (2017). Selection and transmission of antibiotic-resistant bacteria. Microbiology Spectrum, 5(4), 10-1128. https://doi.org/10.1128/microbiolspec.mtbp-0013-2016
Andrade, A. A., Paiva, A. D., & Machado, A. B. F. (2023). Microbiology of street food: understanding risks to improve safety. Journal of Applied Microbiology, 134(8), lxad167. https://doi.org/10.1093/jambio/lxad167
Azekhueme, I., Moses, A. E., & Abbey, S. D. (2015). Extended spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae from University of Uyo Teaching Hospital, Uyo-Nigeria. Journal of Advances in Medical and Pharmaceutical Sciences, 2(3), 117-125. https://doi.org/10.9734/JAMPS/2015/15384
Band, V. I., & Weiss, D. S. (2014). Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics, 4(1), 18-41.
Beshiru, A., Igbinosa, I. H., Enabulele, T. I., Ogofure, A. G., Kayode, A. J., Okoh, A. I., & Igbinosa, E. O. (2023). Biofilm and antimicrobial resistance profile of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in vegetables and salads. LWT, 182, 114913. https://doi.org/10.1016/j.lwt.2023.114913
Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical microbiology reviews, 33(2), 10-1128. https://doi.org/10.1128/CMR.00047-19
Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics, 12(3), 487. https://doi.org/10.3390/antibiotics12030487
Cheesbrough, M. (2006). District laboratory practice in tropical countries, part 2. Cambridge university press. https://doi.org/10.1017/CBO9780511543470
Conway, A., Ehuwa, O., Manning, M., Maye, A., Moran, F., Jaiswal, A. K., & Jaiswal, S. (2023). Evaluation of irish consumers’ knowledge of salmonellosis and food-handling practices. Journal of Consumer Protection and Food Safety, 18(1), 43-55. https://doi.org/10.1007/s00003-022-01405-w
Dela, H., Egyir, B., Behene, E., Sulemana, H., Tagoe, R., Bentil, R., ... & Addo, K. K. (2023). Microbiological quality and antimicrobial resistance of Bacteria species recovered from ready-to-eat food, water samples, and palm swabs of food vendors in Accra, Ghana. International Journal of Food Microbiology, 396, 110195. https://doi.org/10.1016/j.ijfoodmicro.2023.110195
Emmanuel, O. U. (2015). Bacteriological Quality of Ready-to-Eat Foods Sold within Korle-Bu Teaching Hospital and Its Immediate Environs. The International Journal of Science and Technoledge, 3(9), 176.
Garba, L., Yusha’u, M., Abdullahi, M. M., Abubakar, M. U., Inuwa, A. B., Isa, S., & Adamu, M. T. (2018). Effectiveness of double discs synergy test in the confirmation of extended spectrum β-lactamase (ESβL) Production. Journal of Biochemistry, Microbiology and Biotechnology, 6(2), 15-18. https://doi.org/10.54987/jobimb.v6i2.428
Giri, S., Kudva, V., Shetty, K., & Shetty, V. (2021). Prevalence and characterization of extended-spectrum β-lactamase-producing antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in ready-to-eat street foods. Antibiotics, 10(7), 850. https://doi.org/10.3390/antibiotics10070850
Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., & World Health Organization Foodborne Disease Burden Epidemiology Reference Group. (2015). World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS medicine, 12(12), e1001923. https://doi.org/10.1371/journal.pmed.1001923
Horesh, G., Blackwell, G. A., Tonkin-Hill, G., Corander, J., Heinz, E., & Thomson, N. R. (2021). A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microbial genomics, 7(2), 000499. https://doi.org/10.1099/mgen.0.000499
Ibrahim, H. I., Abdulrasheed, M., Hamza, J. A., Mohammed, S. A., Ibrahim, S., Babayo, C., & Nicholas, M. P. (2020). Isolation and Identification of Microorganisms from Street Vended Ready-to-Eat Foods in Gombe Metropolis, Nigeria. UMYU Journal of Microbiology Research (UJMR), 5(2), 26-32. https://doi.org/10.47430/ujmr.2052.004
Igbinosa, E. O., Beshiru, A., Igbinosa, I. H., Ogofure, A. G., & Uwhuba, K. E. (2021). Prevalence and characterization of food-borne Vibrio parahaemolyticus from African salad in southern Nigeria. Frontiers in Microbiology, 12, 632266. https://doi.org/10.3389/fmicb.2021.632266
Jimeta, Z. G., Kiri, A. S., Gambo, Z. B., & Sakiyo, D. C. (2022). Isolation and Identification of Fungi Associated with Rot of Cucumber (Cucumis sativus L.) in Jimeta, Yola North Local Government Area, Adamawa State. Asian Journal of Plant Biology, 4(1), 26-29. https://doi.org/10.54987/ajpb.v4i1.700
Kimera, Z. I., Mshana, S. E., Rweyemamu, M. M., Mboera, L. E., & Matee, M. I. (2020). Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrobial Resistance & Infection Control, 9, 1-12. https://doi.org/10.1186/s13756-020-0697-x
Kinsella, K. J., Prendergast, D. M., McCann, M. S., Blair, I. S., McDowell, D. A., & Sheridan, J. J. (2009). The survival of Salmonella enterica serovar Typhimurium DT104 and total viable counts on beef surfaces at different relative humidities and temperatures. Journal of Applied Microbiology, 106(1), 171-180. https://doi.org/10.1111/j.1365-2672.2008.03989.x
Klees, S., Effelsberg, N., Stührenberg, B., Mellmann, A., Schwarz, S., & Köck, R. (2020). Prevalence and epidemiology of multidrug-resistant pathogens in the food chain and the urban environment in Northwestern Germany. Antibiotics, 9(10), 708. https://doi.org/10.3390/antibiotics9100708
Lammie, S. L., & Hughes, J. M. (2016). Antimicrobial resistance, food safety, and one health: the need for convergence. Annual review of food science and technology, 7, 287-312. https://doi.org/10.1146/annurev-food-041715-033251
Makinde, O. M., Ayeni, K. I., Sulyok, M., Krska, R., Adeleke, R. A., & Ezekiel, C. N. (2020). Microbiological safety of ready‐to‐eat foods in low‐and middle‐income countries: A comprehensive 10‐year (2009 to 2018) review. Comprehensive reviews in food science and food safety, 19(2), 703-732. https://doi.org/10.1111/1541-4337.12533
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
Mengistu, D. A., Belami, D. D., Tefera, A. A., & Alemeshet Asefa, Y. (2022). Bacteriological quality and public health risk of ready-to-eat foods in developing countries: systematic review and meta-analysis. Microbiology Insights, 15, 11786361221113916. https://doi.org/10.1177/11786361221113916
Mengistu, D. A., & Tolera, S. T. (2020). Prevalence of microorganisms of public health significance in ready‐to‐eat foods sold in developing countries: systematic review and meta‐analysis. International Journal of Food Science, 2020(1), 8867250. https://doi.org/10.1155/2020/8867250
Munekata, P. E., Pateiro, M., Rodríguez-Lázaro, D., Domínguez, R., Zhong, J., & Lorenzo, J. M. (2020). The role of essential oils against pathogenic Escherichia coli in food products. Microorganisms, 8(6), 924. https://doi.org/10.3390/microorganisms8060924
Naveed, M., Chaudhry, Z., Bukhari, S. A., Meer, B., & Ashraf, H. (2020). Antibiotics resistance mechanism. In Antibiotics and Antimicrobial Resistance Genes in the Environment (pp. 292-312). Elsevier. https://doi.org/10.1016/B978-0-12-818882-8.00019-X
Ndahi, M. D., Hendriksen, R., Helwigh, B., Card, R. M., Fagbamila, I. O., Abiodun-Adewusi, O. O., & Andersen, J. K. (2023). Determination of antimicrobial use in commercial poultry farms in Plateau and Oyo States, Nigeria. Antimicrobial Resistance & Infection Control, 12(1), 30. https://doi.org/10.1186/s13756-023-01235-x
NCCLS (2004) National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria: Approved Standard M31-A2. NCCLS, Wayne.
Odeyemi, O. A. (2016). Public health implications of microbial food safety and foodborne diseases in developing countries. Food & nutrition research, 60(1), 29819. https://doi.org/10.3402/fnr.v60.29819
Oseyemi, F. H. (2023). Appraising the Knowledge and the Practice of Food Safety Procedure and Hygiene among Food Vendors in Akure South Local Government Area of Ondo State, Nigeria. American Journal of Physical Education and Health Science, 1(1), 31-38. https://doi.org/10.54536/ajpehs.v1i1.1614
Perovic, O., Ismail, H., Van Schalkwyk, E., Lowman, W., Prentice, E., Senekal, M., & Govind, C. N. (2018). Antimicrobial resistance surveillance in the South African private sector report for 2016. Southern African Journal of Infectious Diseases, 33(4), 114-117. https://doi.org/10.4102/sajid.v33i4.160
Ramos, S., Silva, V., Dapkevicius, M. D. L. E., Caniça, M., Tejedor-Junco, M. T., Igrejas, G., & Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals, 10(12), 2239. https://doi.org/10.3390/ani10122239
Sader, H. S., Castanheira, M., Flamm, R. K., Huband, M. D., & Jones, R. N. (2016). Ceftazidime-avibactam activity against aerobic gram-negative organisms isolated from intra-abdominal infections in United States hospitals, 2012–2014. Surgical Infections, 17(4), 473-478. https://doi.org/10.1089/sur.2016.036
Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences, 22(1), 90-101. https://doi.org/10.1016/j.sjbs.2014.08.002
Sidek, H. J., Azman, M. A., & Sharudin, M. S. M. (2018). The Synergistic Antibacterial Effect of Azadirachta indica Leaves Extract and Aloe barbadensis Gel Against Bacteria Associated with Skin Infection. In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017–Volume 2: Science and Technology (pp. 581-591). Springer Singapore. https://doi.org/10.1007/978-981-10-8471-3_58
Singh, K. S., Anand, S., Dholpuria, S., Sharma, J. K., & Shouche, Y. (2020). Antimicrobial resistance paradigm and one-health approach. Sustainable Agriculture Reviews 46: Mitigation of Antimicrobial Resistance Vol 1 Tools and Targets, 1-32. https://doi.org/10.1007/978-3-030-53024-2_1
Vázquez-López, R., Hernández-Martínez, T., Larios-Fernández, S. I., Piña-Leyva, C., Lara-Lozano, M., Guerrero-González, T., & González-Barrios, J. A. (2023). Characterization of Beta-Lactam Resistome of Escherichia coli Causing Nosocomial Infections. Antibiotics, 12(9), 1355. https://doi.org/10.3390/antibiotics12091355
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 40(4), 277.
Vounba, P., Arsenault, J., Bada-Alambedji, R., & Fairbrother, J. M. (2019). Antimicrobial resistance and potential pathogenicity of Escherichia coli isolates from healthy broilers in Québec, Canada. Microbial Drug Resistance, 25(7), 1111-1121. https://doi.org/10.1089/mdr.2018.0403
Wang, S. K., Fu, L. M., Chen, G. W., Xiao, H. M., Pan, D., Shi, R. F., & Sun, G. J. (2020). Multisite survey of bacterial contamination in ready‐to‐eat meat products throughout the cooking and selling processes in urban supermarket, Nanjing, China. Food Science & Nutrition, 8(5), 2427-2435. https://doi.org/10.1002/fsn3.1532
Yu, K., Huang, Z., Xiao, Y., & Wang, D. (2022). Shewanella infection in humans: epidemiology, clinical features and pathogenicity. Virulence, 13(1), 1515-1532. https://doi.org/10.1080/21505594.2022.2117831
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yetunde E Akerele, Chikezie C Onuoha, Ekemini V Udofia, Blessing C Amadi, Mary A Mbahi, Adati B Ladu, George Adekplorvi , Gloria A Asibe, Theophilus K Boakye, Bashir M Ahmad, Muhammad M Umar, Benedict A Wankan, Esther F Kehinde, Abimbola A Aladeselu, Joy O Augustine, Miracle Aliemeke, John O Omoniyi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.