Antibacterial potential of endophytic fungi from Neocarya macrophylla against ESBL-producing Gram-negative bacteria
Keywords:
Endophytic fungi, Neocarya macrophylla, biodiversity, Aspergillus, Alternaria, FusariumAbstract
Background: The increasing prevalence of antibiotic resistance makes the search for novel antibiotics an urgent priority. This study focused on isolating, identifying, and screening endophytic fungi associated with Neocarya macrophylla for their antibacterial potential. Methods: Stem and leaf samples of healthy N. macrophylla were randomly collected from Jega, Kebbi state, Nigeria. The samples were surface-sterilized and then cultured to isolate fungal endophytes. The isolated fungi were identified through a molecular technique. The antimicrobial activity of the extracts obtained from the isolated endophytic fungi was evaluated using the spot on the lawn technique against extensively beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Results: Seven fungal species were isolated from the plant samples. Aspergillus species were most prevalent (71%) followed by 14% each of Fusarium oxysporum and Alternaria alternata. Antibacterial assays against E. coli and K. pneumoniae revealed that A. niger isolate NMST_01 exhibited the highest antibacterial activity with inhibition zones of 10.7 ± 0.6 mm and 9 ± 1 mm against E. coli and K. pneumoniae, respectively. A. fumigatus strain NMST_02 and A. niger isolate NMST_03 also demonstrated moderate antibacterial activity. In contrast, A. pseudonomiae, Alternaria alternata, and A. nidulans exhibited no antibacterial activity. Conclusion: This study represents one of the first descriptions of the culturable endophytic fungi associated with N. macrophylla in Nigeria. The endophytes associated with N. macrophylla were predominantly Aspergillus sp. and they exhibited remarkable antibacterial activity against the tested organisms. Continued research on these endophytic fungi could lead to the discovery of valuable natural products with great pharmaceutical applications.
Downloads
References
Abba, C., Umeokoli, B., Eze, P., & Onyegbule, A. (2014). Anti-oxidant and anti-microbial potentials of some metabolites from an endophytic fungi isolated from Lorantus micranthus from south-eastern Nigeria. Planta Medica, 80(16), s-0034-1394619. https://doi.org/10.1055/s-0034-1394619
Ahmed, A. M., Mahmoud, B. K., Millán-Aguiñaga, N., Abdelmohsen, U. R., & Fouad, M. A. (2023). The endophytic Fusarium strains: A treasure trove of natural products. RSC Advances, 13(2), 1339–1369. https://doi.org/10.1039/d2ra04126j
Akinduyite, A. E., & Ariole, C. N. (2018). Bioactive compounds and antibacterial activity of endophytic fungi isolated from Black Mangrove (Avicennia africana) leaves. Nigerian Journal of Biotechnology, 35(2), 35–42.
Butler, M. S., & Paterson, D. L. (2020). Antibiotics in the clinical pipeline in October 2019. Journal of Antibiotics, 73(6), 329–364. https://doi.org/10.1038/s41429-020-0291-8
Chigozie, V. U., Okezie, M. U., Ajaegbu, E. E., Okoye, F. B., & Esimone, C. O. (2022). Bioactivities and HPLC analysis of secondary metabolites of a morphologically identified endophytic Aspergillus fungus isolated from Mangifera indica. Natural Product Research, 36(22), 5884–5888. https://doi.org/10.1080/14786419.2021.2021517
DeMers, M. (2022). Alternaria alternata as endophyte and pathogen. Microbiology, 168(3), 001153. https://doi.org/10.1099/mic.0.001153
Elghaffar, R. Y. A., Amin, B. H., Hashem, A. H., & Sehim, A. E. (2022). Promising Endophytic Alternaria alternata from Leaves of Ziziphus spina-christi: Phytochemical Analyses, Antimicrobial and Antioxidant Activities. Applied Biochemistry and Biotechnology, 194(9), 3984–4001. https://doi.org/10.1007/s12010-022-03959-9
Eze, P. M., Ojimba, N. K., Abonyi, D. O., Chukwunwejim, C. R., Abba, C. C., Okoye, F. B., & Esimone, C. O. (2018). Antimicrobial activity of metabolites of an endophytic fungus isolated from the leaves of Citrus jambhiri (Rutaceae). http://95.179.195.156:8080/handle/123456789/432
Ezeobiora, C. E., Igbokwe, N. H., Amin, D. H., & Mendie, U. E. (2023). Molecular Phylogenetics Reveals the Diversity of Antagonistic Fungal Endophytes Inhabiting Medicinal Plants in Nigeria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. https://doi.org/10.1007/s40011-023-01495-y
Fernández-Fernández, R., Lozano, C., Fernández-Pérez, R., Zarazaga, M., Peschel, A., Krismer, B., & Torres, C. (2023). Detection and evaluation of the antimicrobial activity of Micrococcin P1 isolated from commensal and environmental staphylococcal isolates against MRSA. International Journal of Antimicrobial Agents, 62(5), 106965. https://doi.org/10.1016/j.ijantimicag.2023.106965
Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7(SEP), 1–8. https://doi.org/10.3389/fmicb.2016.01538
Grabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 11(3), 384. https://doi.org/10.3390/plants11030384
Gupta, A., Meshram, V., Gupta, M., Goyal, S., Qureshi, K. A., Jaremko, M., & Shukla, K. K. (2023). Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules, 13(7), 1038. https://doi.org/10.3390/biom13071038
Harshitha, K., Nair, A. R., & Pandaram Pillai, P. (2023). Overview of bioactive metabolite(s) produced by endophytes and future perspectives on epigenetic modification/regulation of cryptic biosynthetic pathways. Phytochemistry Letters, 53, 116–131. https://doi.org/10.1016/j.phytol.2022.12.003
Hussein, J. M., Myovela, H., & Tibuhwa, D. D. (2024). Diversity of endophytic fungi from medicinal plant Oxalis latifolia and their antimicrobial potential against selected human pathogens. Saudi Journal of Biological Sciences, 31(4), 103958. https://doi.org/10.1016/j.sjbs.2024.103958
Jega, A. Y., Abdullahi, M. I., Musa, A. M., Kaita, H. A., Mzozoyana, V., & Emmanuel, A. A. (2021). Biochemical evaluation and molecular docking assessment of glucosamines from Neocarya macrophylla fruits against Naja nigricollis venom. Carbohydrate Research, 509, 108436. https://doi.org/10.1016/j.carres.2021.108436
Jha, P., Kaur, T., Chhabra, I., Panja, A., Paul, S., Kumar, V., & Malik, T. (2023). Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Frontiers in Microbiology, 14, 1227830. https://doi.org/10.3389/fmicb.2023.1227830
Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: A better web interface. Nucleic Acids Research, 36(suppl_2), W5–W9. https://doi.org/10.1093/nar/gkn201
Khattak, S. U., Ahmad, M., Ahmad, J., Ikram, S., Ahmad, S., Alshabrmi, F. M., & Alatawi, E. A. (2024). Purification of Potential Antimicrobial Metabolites from Endophytic Fusarium oxysporum Isolated from Myrtus communis. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-024-05016-z
Leetanasaksakul, K., Roytrakul, S., Kittisenachai, S., Lohmaneeratana, K., Jantasuriyarat, C., & Lueangjaroenkit, P. (2024). Exploring the Impact of Endophytic Fungus Aspergillus cejpii DMKU-R3G3 on Rice: Plant Growth Promotion and Molecular Insights through Proteomic Analysis. Agronomy, 14(3), Article 3. https://doi.org/10.3390/agronomy14030498
Manganyi, M. C., & Ateba, C. N. (2020). Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms, 8(12), 1934. https://doi.org/10.3390/microorganisms8121934
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Okezie, U. M., Okoye, F. B., & Esimone, C. O. (2022). Orthosporin, a major component of the fermentation product of Lasiodiplodia theobromae-an endophytic fungus of Musa paradisiaca as a potential antimicrobial agent. Notulae Scientia Biologicae, 14(2), 11084–11084. https://doi.org/10.55779/nsb14211084
Olowo-Okere, A., A. J. Yusuf, A.B. Shuaibu, M. I. Abdullahi, G. A. Aleku, T. Nuhu, H.Y. Ungokore, I. A. O. (2018). Antibacterial and Anti-Biofilm Activities of Neocarya Macrophylla Against Clinical Bacterial Isolates. Nig. J. Pharm. Res., 14(1), 111–119. https://doi.org/10.1016/j.jgar.2018.02.002
Olowo-Okere, A., Ibrahim, Y. K. E., & Olayinka, B. O. (2018). Molecular characterisation of extended-spectrum β-lactamase-producing Gram-negative bacterial isolates from surgical wounds of patients at a hospital in North Central Nigeria. Journal of Global Antimicrobial Resistance, 14, 85–89. https://doi.org/10.3390/medsci6030060
Olowo-Okere, A., Ibrahim, Y. K. E., Sani, A. S., & Olayinka, B. O. (2018). Occurrence of surgical site infections at a tertiary healthcare facility in Abuja, Nigeria: A prospective observational study. Medical Sciences, 6(3), 60.
Patriarca, A. (2016). Alternaria in food products. Current Opinion in Food Science, 11, 1–9. https://doi.org/10.1016/j.cofs.2016.08.007
Revathy M.R., Mohan, A. S., Kesavan, D., Sarasan, M., & Philip, R. (2024). Endophytic fungi of spurred mangrove, Ceriops tagal and its bioactivity potential: Predominance of Aspergillus species and its ecological significance. The Microbe, 4, 100144. https://doi.org/10.1016/j.microb.2024.100144
Sarsaiya, S., Jain, A., Jia, Q., Fan, X., Shu, F., Chen, Z., Zhou, Q., Shi, J., & Chen, J. (2020). Molecular Identification of Endophytic Fungi and Their Pathogenicity Evaluation Against Dendrobium nobile and Dendrobium officinale. International Journal of Molecular Sciences, 21(1), Article 1. https://doi.org/10.3390/ijms21010316
Sharma, I., Raina, A., Choudhary, M., Apra, Kaul, S., & Dhar, M. K. (2023). Fungal endophyte bioinoculants as a green alternative towards sustainable agriculture. Heliyon, 9(9), e19487. https://doi.org/10.1016/j.heliyon.2023.e19487
Silva, D. P. D., Cardoso, M. S., & Macedo, A. J. (2022). Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics, 11(11), Article 11. https://doi.org/10.3390/antibiotics11111509
Varghese, S., Jisha, M. S., Rajeshkumar, K. C., Gajbhiye, V., Alrefaei, A. F., & Jeewon, R. (2024). Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. Heliyon, 10(13), e33995. https://doi.org/10.1016/j.heliyon.2024.e33995
Vélëz, H., Gauchan, D. P., & García-Gil, M. del R. (2022). Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Frontiers in Microbiology, 13, 956855. https://doi.org/10.3389/fmicb.2022.956855
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmed Olowo-okere, Ukasha Ishaq, Muhammed Ibn Mohammed , Abdulmalik Aliyu , Yahaya Mohammed

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.