GC-MS profiling, Beta-lactamase Inhibition Assay, and Molecular Docking Studies on Selected Medicinal Plants
DOI:
https://doi.org/10.47430/ujmr.2492.030Keywords:
Molecular docking, Beta-lactamase, Antimicrobial, Phytoconstituents, Binding affinity, Binding energyAbstract
Study’s Excerpt:
• GC-MS profiles of some selected medicinal plants were accessed.
• Beta-lactamase inhibition assay revealed some of the plants are potential inhibitors of beta-lacatamase enzymes.
• Molecular docking simulations showed significant interactions between the bioactive compounds and protein receptors.
Full Abstract:
Bacterial infections are continually developing resistance to conventional antibiotic agents, thereby prompting the search for bioactive compounds from plant parts that would serve as lead molecules in the discovery and development of new drugs. There is a need to explore sustainable, innovative, and safe natural therapeutic methods in preventing and managing AMR infections. Beta-lactamase secretion by bacteria is one of the main resistant mechanisms bacterial enzymes use to resist antibiotics. Hence, this study investigated the beta-lactamase inhibition potential of Salacia nitida and Rauvolfia vomitoria root extracts. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out on the root extracts of S. nitida and R. vomitoria. Molecular docking was performed to determine the binding affinity and energy between class A beta-lactamase and selected bioactive compounds. Results from the beta-lactamase inhibition assay showed that S. nitida and R. vomitoria root extracts had 65.87% and 69.89% inhibitory activity, respectively, against the beta-lactamase enzyme, suggesting that these plant extracts have the potential to be used as a beta-lactamase inhibitor in combination with beta-lactam antibiotics. The GC-MS results revealed 10 bioactive compounds in S. nitida and 28 compounds in R. vomitoria. Molecular docking results showed favourable hydrogen bonds and Van der waal interactions between beta-lactamase and selected bioactive compounds. The findings suggest that these plant extracts possess significant beta-lactamase inhibition activity and this can further lend pharmacological support to their folklore uses as antibiotic agents.
Downloads
References
Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13, 13398. https://doi.org/10.1038/s41598-023-40160-2
Biovia, D. S. (2019). Discovery Studio Visualizer. San Diego.
Chaudhary, M., & Tyagi, K. (2024). A review on molecular docking and its application. International Journal of Advanced Research, 12(3), 1141–1153. https://doi.org/10.21474/IJAR01/18505
Culyba, M. J., & Van, T. D. (2021). Bacterial evolution during human infection: Adapt and live or adapt and die. PLoS Pathogens, 17(9), e1009872. https://doi.org/10.1371/journal.ppat.1009872
Ekweogu, C. N., Akubugwo, E. I., Emmanuel, O., Nosiri, C. I., Uche, M. E., Adurosakin, O. E., Ijioma, S. N., & Ugbogu, E. A. (2024). Phytochemical profiling, toxicity studies, wound healing, analgesic and anti-inflammatory activities of Musa paradisiaca L. Musaceae (Plantain) stem extract in rats. Journal of Ethnopharmacology, 322, 117639. https://doi.org/10.1016/j.jep.2023.117639
Elekwa, I., Ugbogu, A. E., Okereke, S. C., & Okezie, E. (2017). A review of selected medicinal plants with potential health benefits in South-Eastern Nigeria. International Journal of Pharmaceutical and Chemical Sciences, 6(4), 162-171.
Evans, G. J. (2000). Ageing and medicine. Journal of Internal Medicine, 122, 12-19.
Fitzgerald, D. M. (2019). Bacterial evolution: The road to resistance. StatPearls. StatPearls Publishing. eLife, 8, e52092. https://doi.org/10.7554/eLife.52092
Fuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Jr., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., & Wagner, D. D. (2010). Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences, 107(36), 15880-15885. https://doi.org/10.1073/pnas.1005743107
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1549
Kollman, P. A., Massova, I., & Reyes, C. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889-897. https://doi.org/10.1021/ar000033j
Kooltheat, N., Tedasen, A., Yamasaki, K., & Chatatikun, M. (2023). Melanogenesis inhibitory activity, chemical components and molecular docking studies of Prunus cerasoides Buch. Ham. D. Don. flowers. Journal of Evidence-Based Integrative Medicine, 28, 2515690X231152928. https://doi.org/10.1177/2515690X231152928
Leach, A. R., Shoichet, B. K., & Peishoff, C. E. (2006). Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps. Journal of Medicinal Chemistry, 49(20), 5851-5855. https://doi.org/10.1021/jm060999m
Li, X., Cai, Y., Xia, Q., Liao, Y., & Qin, R. (2023). Antibacterial sensitizers from natural plants: A powerful weapon against methicillin-resistant Staphylococcus aureus. Frontiers in Pharmacology, 14, 1118793. https://doi.org/10.3389/fphar.2023.1118793
Liu, Y., & Cao, Y. (2024). Protein-ligand blind docking using CB-Dock2. Methods in Molecular Biology, 2714, 113-125. https://doi.org/10.1007/978-1-0716-3441-7_6
Lulamba, T. E., Green, E., & Serepa-Dlamini, M. H. (2021). Photorhabdus sp. ETL antimicrobial properties and characterization of its secondary metabolites by gas chromatography mass spectrometry. Life, 11(8), 787. https://doi.org/10.3390/life11080787
Ogunrinola, G. A., Oyewale, J. O., Oshamika, O. O., & Olasehinde, G. I. (2020). The human microbiome and its impacts on health. International Journal of Microbiology, 2020, Article ID 8045646. https://doi.org/10.1155/2020/8045646
Okereke, S. C., Ijeh, I. I., & Arunsi, U. O. (2017). Determination of bioactive constituents of Rauwolfia vomitoria Afzel (Asofeyeje) roots using gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FT-IR). African Journal of Pharmacy and Pharmacology, 11(2), 25-31. https://doi.org/10.5897/AJPP2016.4712
Okorondu, S. I., Braide, W., Ogbuile, J. N., & Akujobi, C. O. (2006). Antimicrobial and phytochemical properties of some traditional species. Nigerian Journal of Microbiology, 20, 1301-1308.
Olasehinde, O. R., & Afolabi, O. B. (2022). Identification of bioactive constituents of chloroform fraction from Annona muricata leaf, its antioxidant activity and inhibitory potential against carbohydrate hydrolyzing α-amylase and α-glucosidase activities linked to type II diabetes mellitus: In vitro study. Journal of HerbMed Pharmacology, 12(1), 100-108. https://doi.org/10.34172/jhp.2023.09
Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605–616. https://doi.org/10.1038/s41575-019-0173-3
Shin, J., Prabhakaran, V. S., & Kim, K. S. (2018). The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial Pathogenesis, 116, 209-214. https://doi.org/10.1016/j.micpath.2018.01.043
Suresh, K., Saravana, B. S., & Harisranry, R. (2008). Studies on in vitro antimicrobial activity of ethanol extract of Rauvolfia tetraphylla. Ethnobotanical Leaflets, 12, 586-590.
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
Ugbogu, E. A., Okoro, H., Emmanuel, O., Ugbogu, O. C., Ekweogu, C. N., Uche, M., Dike, E. D., & Ijioma, S. N. (2024). Phytochemical characterization, anti-diarrhoeal, analgesic, anti-inflammatory activities and toxicity profile of Ananas comosus (L.) Merr (pineapple) leaf in albino rats. Journal of Ethnopharmacology, 319(2), 117224. https://doi.org/10.1016/j.jep.2023.117224
Ugbogu, O. C., Okezie, E., Agi, G. O., Ibe, C., Ekweogu, C. N., Ude, V. C., Uche, M. E., Nnanna, R. O., & Ugbogu, E. A. (2021). A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon, 7(11), e08404. https://doi.org/10.1016/j.heliyon.2021.e08404
Ukpai, O. M., Ijioma, S. N., Kanu, K., Orieke, D., Chinedu-Ndukwe, P. A., Ugwuanyi, K. C., & Ugbogu, E. A. (2024). Phytochemical composition, toxicological profiling and effect on pup birth weight of Corchorus olitorius leaf extract in rats: Implications for fetal macrosomia control. Journal of Ethnopharmacology, 323, 117170. https://doi.org/10.1016/j.jep.2023.117170
Viswanatha, T., Marrone, L. G., & Valerie, D. G. (2008). Assays for β-lactamase activity and inhibition. Methods in Molecular Medicine, 142, 239-260. https://doi.org/10.1007/978-1-59745-246-5_19
Wright, G. D. (2016). Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends in Microbiology, 24(11), 862-871. https://doi.org/10.1016/j.tim.2016.06.009
Yan, Z., & Wang, J. (2016). Scoring functions of protein-ligand interactions. In Medical Information Science Reference (pp. 701 E. Chocolate Avenue Hershey PA, USA 17033), Chapter 9. https://doi.org/10.4018/978-1-5225-0115-2.ch009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ubamaka W Ike, Osinachi Samdavid Okpara, Chidi Ijeoma Nosiri, G Enyinnaya Eze, Chinedu Aguwamba, Chinomso Friday Aaron, Okamgba, C. O., S C Okereke

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.