Gut Microbiome Composition and GC-MS Analysis of the Oil Extract from Termite species in Uyo, Akwa Ibom State, Nigeria
DOI:
https://doi.org/10.47430/ujmr.2492.031Keywords:
Macrotermes sp, Odontotermes sp, Bacillus sp, Salmonella sp, Shigella spAbstract
Study’s Excerpt:
• Gut microbiome and GC-MS of oil extract from termite species in Uyo were thoroughly investigated.
• Microbes from termite species were isolated and characterised using morphology and molecular methods.
• GC-MS analysis was performed on oil extracts obtained from the studied termite species samples.
• Odontotermes sp. and Macrotermes sp. were identified, hosting diverse bacterial and fungal isolates.
• GC-MS of termite queen oil showed rich chemical compounds with potential human health benefits.
Full Abstract:
Termites are eusocial insects of the order Isopter, with members gut harbouring certain bacteria and fungi. This study analysed the micro-organisms in the gut of termite species. Ten (10) termitaria were excavated, and termites collected were identified into two species Macrotermes sp. and Odontotermes sp. Fifteen (15) Workers, 25 mandibulated soldiers, and one (1) Queen for Macrotermes sp., and fifteen (15) workers, 25 soldiers, and one Queen for Odontotermes sp were subjected to isolation and characterization of micro-organisms' symbionts from their gut using microbial techniques, grams staining, biochemical, and molecular techniques. The microbial communities harboured in the termites’ gut of the workers, soldiers, queen, and king castes of the Macrotermes sp. and Odontotermes sp. were identified as bacteria of the genera Bacillus sp., Salmonella sp., Shigella sp. and Escherichia coli, and fungi of the genera, Fusarium sp, Termitomyces sp, and Chaetomium sp. The GC-MS analysis of the oil extract from the termite queen demonstrated the presence of thirty-one (31) chemical components. The most prevailing constituents were thymol (23.31 %), seconded by gamma-Terpenene (17.31 %), and followed by p-Cymene (16.40 %), Phenol-2-methyl-5-(1-methyl ethyl)- (7.19%), Lupeol (5.94 %), Terpinen-4-ol (3.19), and Caryophyllene oxide (2.47 %). The results indicated that the termite species host diverse groups of symbiotic bacteria carrying out different enzymatic functions in the gut. This work was the first to report the GC-MS component of the oil extract from termite queen in south-south Nigeria. Nevertheless, further study on the interaction of microbiomes in the gut of termite species is recommended.
Downloads
References
Adebajo, S. O., Akintokun, P. O., Ezaka, E., Ojo, A. E., Olannye, D. U., & Ayodeji, O. D. (2021). Use of termitarium soil as a viable source for biofertilizer and biocontrol. Bulletin of the National Research Centre, 45, 1–8. https://doi.org/10.1186/s42269-021-00560-8
Akpan, A. U., Ojianwuna, C. C., Ubulom, P. M. E., Yaro, C. A., & Oboho, D. E. (2020). Effect of physico-chemical parameters on the abundance and diversity of termites and other arthropods in termite mounds in Uyo, Akwa Ibom state, Nigeria. FUDMA Journal of Sciences (FJS), 4(2), 92–100. https://doi.org/10.33003/fjs-2020-0402-206
Akpan, A. U., Ehisianya, C. N., Ukpai, O. M., Johnny, I. I., Oboho, D. E., Sam, M. E., & Usanga, E. E. (2022). Efficacy of the methanolic and aqueous extracts of Carica papaya and Azadirachta indica against wood termite (Odontotermes badius) in Uyo, Akwa Ibom State, Nigeria. Nigerian Journal of Environmental Sciences and Technology (NIJEST), 6(1), 28–37. https://doi.org/10.36263/nijest.2022.01.0306
Ali, H. R. K., Hemeda, N. F., & Abdelaliem, Y. F. (2019). Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion. AMB Express, 9(1), 111. https://doi.org/10.1186/s13568-019-0830-5
Amadi, N. K., Peekate, L. P., & Wemedo, S. A. (2024). Physicochemical and bacteriological characteristics of groundwater in Rumuigbo, Obio-Akpor Local Government Area of Rivers State, Nigeria. UJMR, 9(1), 46–54. https://doi.org/10.47430/ujmr.2491.005
Auer, L., Lazuka, A., Sillam-Dussès, D., Miambi, E., O'Donohue, M., & Hernandez-Raquet, G. (2017). Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Frontiers in Microbiology, 8, 2623. https://doi.org/10.3389/fmicb.2017.02623
Bachoon, D., Wendy, S., & Dustman, A. (2008). Microbiology laboratory manual (M. Stranz, Ed.). Cengage Learning.
Bailey, W. R., & Scott, E. G. (1974). Diagnostic microbiology (4th ed.). Mosby.
Balamurugan, K., Martin, L., Tracey, U. H., George, C. M., & George, T. D. (2012). Mutation at the human D1S80 minisatellite locus. The Scientific World Journal, 2012, Article ID 917235. https://doi.org/10.1100/2012/917235
Bourguignon, T., Sobotník, J., Dahlsjö, C. A. L., & Roisin, Y. (2016). The soldierless Apicotermitinae: Insights into a poorly known and ecologically dominant tropical taxon. Insectes Sociaux, 63, 39–50. https://doi.org/10.1007/s00040-015-0446-y
Brune, A. (2006). Symbiotic associations between termites and prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes: A handbook on the biology of bacteria: Symbiotic associations, biotechnology, applied microbiology (Vol. 1, pp. 439–474). Springer-Verlag. https://doi.org/10.1007/0-387-30741-9_17
Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168. https://doi.org/10.1038/nrmicro3182
Brune, A., & Dietrich, C. (2015). The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology, 69, 145–166. https://doi.org/10.1146/annurev-micro-092412-155715
Bugg, T. D. H., Ahmad, M., Hardiman, E. M., & Singh, R. (2010). The emerging role for bacteria in lignin degradation and bioproduct formation. Current Opinion in Biotechnology, 22(1), 1–7. https://doi.org/10.1016/j.copbio.2010.10.009
Buchanan, R. E., & Gibbons, N. E. (1994). Bergey's manual of determinative bacteriology (9th ed.). Williams & Wilkins.
Claybourne, A. (2013). A colony of ants, and other insect groups. Heinemann Library.
Constantino, R. (1999). An illustration key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Insect Systematics and Evolution, 31, 463–472. https://doi.org/10.1163/187631200X00499
Costa, R. R. D., Hu, H., Li, H., & Poulsen, M. (2019). Symbiotic plant biomass decomposition in fungus-growing termites. Insects, 10(4), 87. https://doi.org/10.3390/insects10040087
Crown, S. T., & Gen, J. (1998). Micromethod for the methyl red test. Microbiology, 9(1), 101–109. https://doi.org/10.1099/00221287-9-1-101
Devaraj, V., & Kesti, S. S. (2019). Isolation and molecular characterization of termite gut microflora. International Journal of Scientific Research in Biological Sciences, 6(3), 41–49. https://doi.org/10.26438/ijsrbs/v6i3.4149
Devi, I. A., & Muthu, A. K. (2015). Gas chromatography-mass spectrometry analysis of phytocomponents in the ethanolic extract from whole plant of Lactuca runcinata DC. Asian Journal of Pharmaceutical and Clinical Research, 8(1), 202–206.
Facklam, R., & Elliott, J. A. (1995). Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clinical Microbiology Reviews, 8(4), 479. https://doi.org/10.1128/CMR.8.4.479
Foti, M. C., & Ingold, K. U. (2003). Mechanism of inhibition of lipid peroxidation by gamma-terpinene, an unusual and potentially useful hydrocarbon antioxidant. Journal of Agricultural and Food Chemistry, 51, 2758–2765. https://doi.org/10.1021/jf020993f
Fuks, G., Elgart, M., Amir, A., Zeisel, A., Turnbaugh, P. J., Soen, Y., & Shental, N. (2018). Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbiome, 6, 17. https://doi.org/10.1186/s40168-017-0396-x
Gordon, D. M. (2016). From division of labor to the collective behaviour of social insects. Behavioral Ecology and Sociobiology, 70, 1101–1108. https://doi.org/10.1007/s00265-015-2045-3
Hamdan, D., Ashour, M. L., Mulyaningsih, S., El-Shazly, A., & Wink, M. (2013). Chemical composition of the essential oils of variegated pink-fleshed lemon (Citrus × limon L. Burm. f.) and their anti-inflammatory and antimicrobial activities. Zeitschrift für Naturforschung C, 68, 275–284. https://doi.org/10.1515/znc-2013-7-804
Hema, R., Kumaravel, S., & Sivasubramanian, C. (2010). GC-MS study on the potentials of Syzygium aromaticum. Researcher, 2, 1–4.
Hervé, V., Liu, P., Dietrich, C., Sillam-Dussès, D., Stiblik, P., Šobotník, J., & Brune, A. (2020). Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ, 8, e8614. https://doi.org/10.7717/peerj.8614
Holt, J. G., Krieg, N. R., & Sneath, P. H. A. (1994). Bergey's manual of determinative bacteriology (9th ed.). Williams & Wilkins.
Kohler, T., Dietrich, C., Scheffrahn, R. H., & Brune, A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Applied and Environmental Microbiology, 78(13), 4691–4701. https://doi.org/10.1128/AEM.00683-12
König, H. (2006). Bacillus species in the intestine of termites and other soil invertebrates. Journal of Applied Microbiology, 101, 620–627. https://doi.org/10.1111/j.1365-2672.2006.02914.x
Kumar, A., Asha, P., Sharma, R., Monika, J., Rakesh, S., & Rekha, S. (2020). Termite gut: Home to microbiome. Uttar Pradesh Journal of Zoology, 41(22), 9–23.
Lima, T. de, Pontual, E. V., Dornelles, L. P., Amorim, P. K., Sá, R. A., Coelho, L. C., Napoleão, T. H., & Paiva, P. M. (2014). Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 176, 1–8. https://doi.org/10.1016/j.cbpb.2014.07.001
MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd ed.). Lippincott Williams & Wilkins.
Majeed, M. Z., Miambi, E., Robert, A., Bernoux, M., & Brauman, A. (2012). Xylophagous termites: A potential sink of atmospheric nitrous oxide. European Journal of Soil Biology, 53, 121–125. https://doi.org/10.1016/j.ejsobi.2012.10.002
Mathew, G. M., Ju, Y., Lai, C., Mathew, D. C., & Huang, C. C. (2012). Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: The implication of Bacillus as mutualists. FEMS Microbiology Ecology, 79(2), 504–517. https://doi.org/10.1111/j.1574-6941.2011.01232.x
Matthew, O., Chiamaka, R., & Chidinma, O. (2017). Microbial analysis of poultry feeds produced in Songhai farms, Rivers State, Nigeria. Nigerian Journal of Microbiology and Experimentation, 4(2), 11–12. https://doi.org/10.15406/jmen.2017.04.00110
Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9. https://doi.org/10.1007/s00253-002-1189-z
Peekate, L. P. (2022). Deciphering the identity of bacterial isolates through conventional means: A practical guide. Edese Printing & Publishing Company.
Ramin, M., Alimon, A. R., Abdullah, N., Panandam, J. M., & Sijam, K. (2008). Isolation and identification of three species of bacteria from the termite Coptotermes curvignathus (Holmgren) present in the vicinity of university. Research Journal of Microbiology, 3(4), 288–292. https://doi.org/10.3923/jm.2008.288.292
Rossmassler, K., Dietrich, C., Thompson, C., Mikaelyan, A., Nonoh, J. O., Scheffrahn, R. H., Sillam-Dussès, D., & Brune, A. (2015). Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome, 3, 56. https://doi.org/10.1186/s40168-015-0118-1
Sarkar, U., & Sawardekar, S. S. (2022). GC-MS analysis of extracted essential oil of Piper betel L. IJRASET Journal for Research in Applied Science and Engineering Technology, 10(11), 912–915. https://doi.org/10.22214/ijraset.2022.47447
Scharf, M. E. (2015). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102. https://doi.org/10.1146/annurev-ento-010814-020902
Schauer, C., Thompson, C. L., & Brune, A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology, 78(8), 2758–2767. https://doi.org/10.1128/AEM.07788-11
Sharma, D., Joshi, B., Bhatt, M. R., Joshi, J., Malla, R., Bhattarai, T., & Sreerama, L. (2015). Isolation of cellulolytic organisms from the gut contents of termites native to Nepal and their utility in saccharification and fermentation of lignocellulosic biomass. Journal of Biomass and Biofuel, 2, 11–20. https://doi.org/10.11159/jbb.2015.002
Tai, V., James, E. R., Nalepa, C. A., Scheffrahn, R. H., Perlman, S. J., & Keeling, P. J. (2015). The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Applied and Environmental Microbiology, 81(3), 1059–1070. https://doi.org/10.1128/AEM.02945-14
The University of Uyo. (2016). Uniuyo.nucdb.edu.org. Archived from the original on 2016-02-02. Retrieved 2016-01-27.
Tokuda, G., Tsuboi, Y., Kihara, K., Saitou, S., Moriya, S., Lo, N., & Kikuchi, J. (2014). Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: Insights into gut symbiont function. Proceedings of the Royal Society B: Biological Sciences, 281, 20140990. https://doi.org/10.1098/rspb.2014.0990
Um, S., Fraimout, A., Sapountzis, P., Oh, D.-C., & Poulsen, M. (2013). The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Scientific Reports, 3, 3250. https://doi.org/10.1038/srep03250
Vashist, H., Sharma, D., & Gupta, A. (2013). A review on commonly used biochemical test for bacteria. Journal of Life Sciences, 1(1), 1–7.
Wenzel, M., Schönig, M., Berchtold, M., Kämpfer, P., & König, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92, 32–40. https://doi.org/10.1046/j.1365-2672.2002.01502.x
Winn, W., Allen, S., Janda, W., Koneman, E., Procop, G., Schreckenberger, P., & Woods, G. (2006). Color atlas and textbook of diagnostic microbiology (6th ed.). Lippincott Williams & Wilkins.
Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478
Zhou, J., Duan, J., Gao, M., Wang, Y., Wang, X., & Zhao, K. (2018). Diversity, roles and biotechnological applications of symbiotic microorganisms in the gut of termite. Current Microbiology, 76, 755–761. https://doi.org/10.1007/s00284-018-1502-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Akaninyene U Akpan, Johnny, I. I., Chikezie, F. M., Ekedo, C. M., Ubulom, P. M. E., Esenowo, I. K., Esenowo, I. K., Oboho, D. E., Ukatu, P. O., Ekpo, E. J., Essien, U. B.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.