Improvement of the Nutrimental Status of Albizia lebbeck Seed through Solid State Fermentation by Some Fungal Species
DOI:
https://doi.org/10.47430/ujmr.2492.016Keywords:
Albizia lebbeck, Fermentation, Fungi, Nutritional status, Aspergillus niger, Penicillium citrinum, Cladosporium cladosporioidesAbstract
Fungal fermentation is a promising method of converting under-utilized non-conventional feed materials into edible food to combat hunger and malnutrition in the growing world population and provide a suitable alternative to conventional food materials. The nutritional status of Albizia lebbeck seed was improved through fungal solid state fermentation in this research. The pulverized seed was subjected to spontaneous fermentation to isolate resident fungi. Isolates were characterized and identified using DNA amplification and sequencing and were used in induced, monoculture solid-state fermentation of A. lebbeck seed for five days. Effects of fermentation on the seed were assessed on proximate, phytochemical, anti-oxidant, mineral contents and amino acid profile using standard methods. Isolated fungi were Aspergillus niger (OR879114), Penicillium citrinum (OR879113), and Cladosporium cladosporioides (OR879115). Generally, there was significant difference (P≤0.05) in the proximate composition of the post-fermented seed; the crude protein and total ash content increased from 10.79±0.53 to 22.69±1.83, and 5.16 ± 0.02 to 9.29 ± 0.12 respectively while the total carbohydrate decreased from 45.99±3.01 to 25.95±1.03, phytochemical content reduced significantly; tannins and alkaloids reduced from 12.14±0.20 to 0.34±0.01, and 20.70±2.18 to 0.79±0.08 respectively in sample fermented with Penicillum citrinum (OR879113). Anti-oxidant, mineral contents, and the amino acid profile were also remarkably improved. Fermentation with Penicillium citrinum strain OR879113 has the best products, while the least was in products fermented with Aspergillus niger OR879114. The fermentation with the isolated fungi has a significant desirable effect on the nutritional status of the seed of Albizia lebbeck.
Downloads
References
Abarna, V. P., and Vishnupriya, R. (2022). DNA barcoding reveals the natural occurrence of Beauveria bassiana (Balsamo) Vuillemin in two-spotted spider mite, Tetranychus urticae Koch in Bhendi [Abelmoschus esculentus (L.) Moench] ecosystem in Coimbatore district of Tamil Nadu; Egyptian Journal of Biological Pest Control, 32(1), 128.
https://doi.org/10.1186/s41938-022-00623-6
Abdullahi, N., Dandago, M. A. and Yunusa, A. K (2021). Review on Production of Single-Cell Protein from Food Wastes; Turkish Journal of Agriculture Food Science and Technology, 9(6): 968-974.
https://doi.org/10.24925/turjaf.v9i6.968-974.3758
Achi, O. K. (2005). Traditional fermented condiments in Nigeria, African Journal of Biotechnology; 4(13):1612-1621.
Adebowale, Y. A., Adeyemi, A. and Oshodi, A. A. (2005). Variability in physicochemical, nutritional and anti-nutritional attributes of six Mucuna species. Food Chemistry, 89: 37 - 48.
https://doi.org/10.1016/j.foodchem.2004.01.084
Adedayo, M. R. and Sani, A. (2015). The Amino acid and Mineral Composition of monoculture Fungal Fermented Baobab (Adansonia digitata) seed, International Journal of Current Microbiology and Applied Sciences. 4(8): 990-999.http://www.ijcmas.com ISSN:2319-7706
Adedayo, M. R. and Sani, A. (2019). Effect of Solid-State Fungal Fermentation on the Chemical Composition of Adansonia digitata Seed; Covenant Journal of Physical and Applied Sciences, 7(1): 37-46, URL http//Journal.covenantuniversity.edu.ng/cjoe/;
Adegbehingbe, K. T. (2014). Effect of fermentation on nutrient composition and anti-nutrient contents of ground Lima beanseeds fermented with Aspergillus fumigatus, Rhizopus stolonifer and Saccharomyces cerevisiae, International Journal of Advanced Research, 2(7):1208-1215.
Adegbehingbe, K. T., Fakoya, S. and Adeleke, B. S. (2017). Effect of fermentation on nutrient and anti-nutrienttt contents of fermented whole and ground African breadfruit (Treculia africana) seeds, Microbiology Research Journal International, 20(5), 1-11.
https://doi.org/10.9734/MRJI/2017/34444
Andeta, A. F. ,Vandeweyer, D. , Woldesenbet, F. , Eshetu, F. , Hailemicael, A. , Woldeyes, F., Crauwels, S. , Lievens, B. , Ceusters, J. , Vancampenhout, K. , and Van Campenhout, L. (2018). Fermentation of enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamic, Food Microbiology, 73, 342-350.
https://doi.org/10.1016/j.fm.2018.02.011
Association of Official Analytical Chemists (AOAC). (2020) Official Methods of Analysis (16th ed.). Washington, D.C.
Audu, S.S and Aremu, M.O. (2011). Effect of processing on chemical composition of red kidney bean (Phaseolus vulgaris L.) flour, Pakistan Journal of Nutrition, 10(11):1069-1075.
https://doi.org/10.3923/pjn.2011.1069.1075
Audu, R. O., Ijah, U. J. J., and Mohammed, S. S. D. (2023). Pre-treatment, Physicochemical Properties and Production of Bioethanol from Rice Husk using Fungi Isolated from Waste Dumpsite in Kaduna, Nigeria. Journal of Applied Sciences and Environmental Management, 27(7), 1359-1370.
https://doi.org/10.4314/jasem.v27i7.5
Balogun, D. A., Oke, M. A., Rocha-Meneses, L., Fawole, O. B., and Omojasola, P. F. (2022). Phosphate solubilization potential of indigenous rhizosphere fungi and their biofertilizer formulations
Bankefa, E.O. and Oyedeji, O.M. (2015). Synergistic fermentative nutritional quality of Lactobacillusdelbrueckii and Bacillus pumilus on date fruits (Phoenix dactylifera); African Journal of Food Science, 9(5):307-313.
https://doi.org/10.5897/AJFS2014.1217
Bosha, A. ,Dalbato, A. L. , Tana, T. , Mohammed, W. , Tesfaye, B. , and Karlsson, L. M. (2016). Nutritional and chemical properties of fermented food of wild and cultivated genotypes of enset (Enseteventricosum). Food Research International, 89, 806-811.
https://doi.org/10.1016/j.foodres.2016.10.016
Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of free radical method to evaluate anti-oxidant activity. Lebens- Wiss Technology; 28:25-30.
https://doi.org/10.1016/S0023-6438(95)80008-5
Celik, C., Ildiz, N., Sagiroglu, P., Atalay, M. A., Yazici, C., and Ocsoy, I. (2020). Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta, 219, 121292.
https://doi.org/10.1016/j.talanta.2020.121292
Deveci, G., Çelik, E., A˘gagündüz, D., Bartkiene, E., Rocha, J.M.F. and Özogul, F. (2023). Certain Fermented Foods and Their Possible Health Effects with a Focus on Bioactive Compounds and Microorganisms, Fermentation, 9, 923.
https://doi.org/10.3390/fermentation9110923
D'souza, M. R. (2013). Effect of traditional processing methods on nutritional quality of field bean. Advances in Bioresearch, 4(3):29-33.
FAO, (2018). Future of food and agriculture 2018: Alternative Pathways to 2050.
Fowomola, M. A., Akindahunsi, A. A. (2008). Effects of fermentation on some anti-nutrientsss and nutrients contents of sandbox (Hura crepitans) seed. Journal of Food, Agriculture and Environment, 6(2):25-28.
Garrido-Galand, S., Asensio-Grau, A., Calvo-Lerma, J., Heredia, A. and Andrés, A. (2021). The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review, Food Research International, 145, 110398.
https://doi.org/10.1016/j.foodres.2021.110398
Ifesan, B.O.T., Akintade, A.O. and Gabriel-Ajobiewe, R.A.O. (2017). Physicochemical and nutritional properties of Mucuna pruriens and Parkia biglobosa subjected to controlled fermentation; International Food Research Journal, 24(5):2177-2184.
Kapilan, R., Rajendran, S. and Vasantharuba, S. (2018). Single Cell Protein Production from Papaw and Banana Fruit Juices Using Baker's Yeast. American-Euroasian Journal of Agriculture and Environmental Science; 18: 168-172.
Kawata, H. M., Omojasola, P. F., Ajiboye A.E., Adedayo, M.R. and Bale, S. I. (2024). Isolation, Identification and Screening of Humic Acid Producing Fungi from Soil Environment of Oil palm (Elaeis guineensis) Associated with Empty Fruit Bunches, UMYU Journal of Microbiology Research, 8(2), 165 - 173.
https://doi.org/10.47430/ujmr.2382.019
Kirtikar, K. R., Basu, B. D. (2000). Indian Medicinal Plants; Lalit Mohan Publication. Allahabad, India.
Mensah, J.K.M., Twumasi P. (2017). Use of pineapple waste for single cell protein (SCP) production and the effect of substrate concentration on the yield; Journal of Food Process Engineering 40: 1-9.
https://doi.org/10.1111/jfpe.12478
Obafemi, Y.D., Oranusi, S. U., Ajanaku. K. O., Akinduti. P. A. John Leech. L., Paul D. and Cotter, P. D. (2022). African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling; NPJ Science of Food 6(15).
https://doi.org/10.1038/s41538-022-00130-w
Olutiola, P.O., O. Famurewa and H.G. Sonntag, 2000. Introduction to General Microbiology: A Practical Approach. 2nd Edn., Bolabay Publications, Ikeja, Nigeria.
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R.and Anthony, S. (2019). Agroforestree Database: A tree reference and selection guide, World Agroforestry Centre, Nairobi, Kenya, 6.
Osman, A., Kamaldeen, B. A., Osafo, E. L. K., Attoh-Kotoku, V. and Abdul Aziz, Y. (2019). Biomass Yield and Chemical composition of Red Napier Grass Harvested at Different Dates after Planting in the Forest Zone of Ghana, Ghana journal of Animal Science, 10(1).
Pesante G., Zuliani A., Bolzonella D. and Frison N., (2022). Biological Conversion of Agricultural Wastes Into Microbial Proteins for Aquaculture Feed, Chemical Engineering Transactions, 92, 391-396.
Puwastien, P., Siong, T.E., Kantasubrata, J., Craven, G., Feliciano, R.R., Judprasong, K. A. (2011). Manual of Food Analysis, Institute of Nutrition, Mahidol University: Thailand; 188.
Reihani, S.F.S. and Khosravi-Darani, K. (2019). Influencing factors on single-cell protein production by submerged fermentation: A review; Electronic Journal of Biotechnology 37: 34-40.
https://doi.org/10.1016/j.ejbt.2018.11.005
Şanlier, N., Gökcen, B. B. and Sezgin, A. C. (2019). Health benefits of fermented foods. Critical reviews in food science and nutrition, 59(3), 506-527.
https://doi.org/10.1080/10408398.2017.1383355
Senanayake, D., Torley, P.J., Chandrapala, J. and Terefe, N.S. (2023). Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes, Fermentation, 9, 635.
https://doi.org/10.3390/fermentation9070635
Stagnari, F., Maggio, A., Galieni, A. and Pisante, M. (2017). Multiple Benefits of Legumes for Agriculture Sustainability: An Overview, Chem. Biol. Technol. Agric, 4, 2.
https://doi.org/10.1186/s40538-016-0085-1
Tamura, K. and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Molecular Biology and Evolution 10:512-526.
Tamura, K., Stecher G. and Kumar. S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution.
https://doi.org/10.1093/molbev/msab120
Tesfaye, S., Tsegaye , G. A., Mmenberu, Y. and Abebe, D. (2024). Proximate Analysis and Mineral Contents of Atella from Traditional Tella Brewers in Jimma City, Ethiopia; Bulletin of the Chemical Society of Ethiopia, Chemical Society of Ethiopia and The Authors Printed in Ethiopia, 38(4), 825-837. Online ISSN 1726-801X, ISSN 1011-3924.
https://doi.org/10.4314/bcse.v38i4.1
Thapa, N. and Tamang, J.P. (2015)."Functionality and therapeutic values of fermented foods,"in Health Benefits of Fermented Foods, ed. J. P. Tamang (New York: CRC Press),111-168.
https://doi.org/10.1201/b18279-3
Toor, B.S.. Kaur, A. and Kaur, J. (2022). Fermentation of legumes with Rhizopus oligosporus: Effect on physicochemical, functional and microstructural properties, International Journal of Food Science Technology, 57, 1763-1772.
https://doi.org/10.1111/ijfs.15552
van Dijk, M., Morley, T., Rau, M.L. and Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050, Natural Food, 2, 494-501.
https://doi.org/10.1038/s43016-021-00322-9
Vashishth, A., Ram, S. and Beniwal, V. (2017). Cereal phytases and their importance in improvement of micronutrients bioavailability, 3, Biotech, 7(1), 42.
https://doi.org/10.1007/s13205-017-0698-5
Victor, O. D., Adegboyega, O.F. and Victor, O.A.(2021). Morphological and Molecular Characterization of Aspergillus niger Causing Postharvest rot of White Yam (Dioscorea rotundataPoir), Archives of Phytopathology and Plant Protection, 54:19-20, 2356-2374.
https://doi.org/10.1080/03235408.2021.1983365
Yafetto, L., Odamtten, G. T. and Wiafe-Kwagyan, M. (2023). Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case; Heliyon.
https://doi.org/10.1016/j.heliyon.2023.e14814
Zia-Ul-Haq, M., Shahid, S.A. and Ahmad, S. (2012). Mineral contents and anti-oxidant potential of selected legumes of Pakistan; Journal of Medicinal Plants Research, 6: 2256-2260.
https://doi.org/10.5897/JMPR11.1532
Zia-Ul-Haq, M., Ahmad, S., Qayum, M. and Ercişli, S. (2013). Compositional studies and anti-oxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds, Turkish Journal of Biology, 37(1), 25-32.
https://doi.org/10.3906/biy-1204-38
Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., and Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and anti-oxidant activities of buckwheat, Journal of Food Science, 80(5), H1111-H1119.
https://doi.org/10.1111/1750-3841.12830
Zhang, C., Derrien, M.;,Levenez, F., Brazeilles, R., Ballal, S.A., Kim, J.; Degivry, M.-C., Quéré, G., Garault, P. and Vlieg, J.E.T.V.H. et al. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes, ISME Journal, 10, 2235-2245.
https://doi.org/10.1038/ismej.2016.13
Zhang, M., Guo, H., Xia, D., Dong, Z., Liu, X., Zhao, W., Jia, J. and Yin, X. (2022). Metagenomic Insight of Corn Straw Conditioning On Substrates Metabolism during Coal Anaerobic Fermentation, Science Total Environment 8(8):152-220
https://doi.org/10.1016/j.scitotenv.2021.152220
Zhang, Y., Sun, T., Wu, T., Li, J., Hu, D., Liu, D., and Tian, C. (2023). Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila, Metabolic Engineering
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Majekodunmi Adedayo, FOLASHADE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.