Vectorial Diversity of Indoor-resting Mosquitoes in Damboa Town, Borno State, Nigeria: Implications for Disease Transmission and Control Strategies

Authors

Keywords:

Arboviruses, Mosquito, Damboa, Aedes, Nigeria, Anopheles

Abstract

One of the reasons for the reemergence of yellow fever in Nigeria in 2017, twenty-one years after the last reported outbreak, was as a result of the presence of female mosquitoes, which serve as vehicles for the transmission of not only yellow fever virus but also other arboviruses, filarial worms, and protozoa, to susceptible human hosts. Female mosquitoes, particularly the indoor-resting, due to their blood-sucking nature, are responsible for sustaining the transmission cycles of arthropod-borne diseases, particularly in regions such as Damboa, where environmental conditions and inadequate control measures facilitate the breeding and survival of these mosquitoes. The predominance of blood-fed female mosquitoes within human habitation is, therefore, indicative of the heightened risk of arboviral outbreaks and calls for targeted interventions. This study was therefore carried out to assess the vectorial diversity of indoor-resting mosquitoes in Damboa Town, towards effective management and control of mosquito-borne diseases. Exactly 727 mosquitoes were collected indoors from human habitations in Damboa town of Borno State during the month of May to August according to the standard method described by the World Health Organization (WHO). Morphological examination of the mosquito revealed 92.30% Culex species, 7.15% Aedes aegypti, and 0.55% Anopheles gambiae. The females accounted for the majority (79.50%: 578/727) of the entire mosquito population, with 44.5% (257) being blood-fed, 6.0% (35) being gravid, 6.2% (36) being half-gravid, while 43.25% (250) were non-blood-fed. This study's findings suggest that as most female mosquitoes are blood fed, there is a high risk of mosquito-borne diseases and potential outbreaks, most especially in the absence of interventions. Therefore, this calls for an arbovirus surveillance system, mass vaccination against vaccine-preventable arboviral diseases, and the adoption of effective protective measures against mosquito bites by the individual human residents of Damboa, among other control measures.

Downloads

Download data is not yet available.

Author Biographies

Waseve Vandu-kwabe, Department of Microbiology, Baze University, Abuja, Nigeria

Assitant Lecturer, Department of Microbiology.

David Bukbuk, Department of Microbiology, University of Maiduguri, Borno State, Nigeria

Professor of Virology and Immunology, Department of Microbiology

Daniel Makolo, Department of Microbiology, Baze University, Abuja, Nigeria

Department of Microbiology.

References

Adamu, A. M., Allam, L., Sackey, A. K. B., Nma, A. B., Mshelbwala, P. P., Machunga-Mambula, S., Idoko, S. I., Adikwu, A. A., Nafarnda, W. D., Garba, B. S., Owolodun, O. A., Dzikwi, A. A., Balogun, E. O., & Simon, A. Y. (2021). Risk factors for Rift Valley fever virus seropositivity in one-humped camels (Camelus dromedaries) and pastoralist knowledge and practices in Northern Nigeria. One Health, 13, 1000340. https://doi.org/10.1016/j.onehlt.2021.100340

Ajogbasile, F. V., Oguzie, J. U., Oluniyi, P. E., Eromon, P. E., Uwanibe, J. N., Mehta, A. B., Siddle, K. J., Odia, I., Winnicki, S. M., Akpede, N., Akpede, G., Okogbenin, S., Ogbaini-Emovon, E., MacInnis, B. L., Folarin, O. A., Modjarrad, K., Schaffner, S. F., Tomori, O., Ihekweazu, C., Sabeti, P. C., & Happi, C. T. (2020). Real-time metagenomic analysis of undiagnosed fever cases unveils a yellow fever outbreak in Edo State, Nigeria. Scientific Reports, 10, 3180. https://doi.org/10.1038/s41598-020-59880-w

Ambe, J. P., Balogun, S. T., Waziri, M. B., Nglass, I. N., & Saddiq, A. (2020). Impacts of seasonal malaria chemoprevention on malaria burden among under five-year-old children in Borno State, Nigeria. Journal of Tropical Medicine, 2020(1), 9372457. https://doi.org/10.1155/2020/9372457

Andreazza, F., Oliveira, E. E., & Martins, G. F. (2021). Implications of sublethal insecticide exposure and the development of resistance on mosquito physiology, behavior, and pathogen transmission. Insects, 12(10), 917. https://doi.org/10.3390/insects12100917

Artsob, H., Lindsay, R., & Drebot, M. (2023). Arboviruses. In Reference Module in Biomedical Sciences (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-323-99967-0.00041-7

Asgarian, T. S., Moosa-Kazemi, S. H., & Sedaghat, M. M. (2021). Impact of meteorological parameters on mosquito population abundance and distribution in a former malaria endemic area, central Iran. Heliyon, 7(12), e08477. https://doi.org/10.1016/j.heliyon.2021.e08477

Bello, Y., Msheliza, D. S., & Nyikun, P. R. (2023). Anomalies and trend analysis of temperature and rainfall in Maiduguri, Borno State, Nigeria. Dutse Journal of Pure and Applied Sciences, 9(4b), 414-422.

Bharati, M., & Saha, D. (2021). Insecticide resistance status and biochemical mechanisms involved in Aedes mosquitoes: A scoping review. Asian Pacific Journal of Tropical Medicine, 14(2), 52-63. https://doi.org/10.4103/1995-7645.306737

Blitvich, B. J., Magalhaes, T., Laredo-Tiscareño, S. V., & Foy, B. D. (2020). Sexual transmission of arboviruses: A systematic review. Viruses, 12(9), 933. https://doi.org/10.3390/v12090933

Byaruhanga, T., Kayiwa, J. T., Nankya, A. M., Ataliba, I. J., McClure, C. P., Ball, J. K., & Lutwama, J. J. (2023). Arbovirus circulation, epidemiology and spatiotemporal distribution in Uganda. IJID Regions, 6, 171-176. https://doi.org/10.1016/j.ijregi.2023.01.013

Centers for Disease Control and Prevention. (2024). Yellow fever in Nigeria - Level 2. https://wwwnc.cdc.gov/travel/notices/level2/yellow-fever-nigeria

Dalpadado, R., Amarasinghe, D., & Gunathilaka, N. (2022). Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha District of Sri Lanka. Acta Tropica, 229, 106339. https://doi.org/10.1016/j.actatropica.2022.106339

Dutra, H. L., Rocha, M. N., Dias, F. B., Mansur, S. B., Caragata, E. P., & Moreira, L. A. (2016). Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host & Microbe, 19(6), 771-774. https://doi.org/10.1016/j.chom.2016.04.021

Ekenna, O., Chikwem, O. J., Mohammed, I., Durojaiye, S. O., Monguno, A. M., & Gubler, D. J. (2010). Epidemic yellow fever in Borno State of Nigeria: Characterisation of hospitalised patients. West African Journal of Medicine, 29(2), 91-97.

Fauci, A. S., & Morens, D. M. (2016). Zika virus in the Americas-yet another arbovirus threat. New England Journal of Medicine, 374(7), 601-604. https://doi.org/10.1056/NEJMp1600297

Fillinger, U., Sonye, G., Killeen, G. F., Knols, B. G. J., & Becker, N. (2004). The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: Operational observations from a rural town in western Kenya. Tropical Medicine & International Health, 9(12), 1274-1289. https://doi.org/10.1111/j.1365-3156.2004.01335.x

Gan, S. J., Leong, Y. Q., bin Barhanuddin, M. F. H., Wong, S. T., Wong, S. F., Mak, J. W., & Ahmed, R. B. (2021). Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasites & Vectors, 14(1), 315. https://doi.org/10.1186/s13071-021-04785-4

Genoud, A. P., Gao, Y., Williams, G. M., & Thomas, B. P. (2019). Identification of gravid mosquitoes from changes in spectral and polarimetric backscatter cross sections. Journal of Biophotonics, 12(10), e201900123. https://doi.org/10.1002/jbio.201900123

Gillies, M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). South African Institute for Medical Research.

Gillies, M. T., & De Meillon, B. A. (1968). The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region) (2nd ed.). South African Institute for Medical Research.

Girard, M., Nelson, C. B., Picot, V., & Gubler, D. J. (2020). Arboviruses: A global public health threat. Vaccine, 38, 3989-3994. https://doi.org/10.1016/j.vaccine.2020.04.011

Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., & Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34, 78-83. https://doi.org/10.1038/nbt.3439

Huho, B., Briët, O., Seyoum, A., Sikaala, C., Bayoh, N., & Gimnig, J. (2013). Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. International Journal of Epidemiology, 42(1), 235-247. https://doi.org/10.1093/ije/dys214

Irikannu, K. C., Nwalioba, E. C., Umeanaeto, P. U., Nzeukwu, C., Aniefuna, C. O., Onwuachusi, G. L., Elosiuba, N., Obiefule, I. E., & Uzochukwu, C. U. (2022). Composition of mosquito species and physiological states of indoor man-biting mosquitoes at Nteje, South-Eastern Nigeria. The Bioscientist Journal, 10(1), 113-122.

Junglen, S., Kurth, A., Kuehl, H., Quan, P. L., Ellerbrok, H., Pauli, G., Nitsche, A., Nunn, C., Rich, S. M., Lipkin, W. I., Briese, T., & Leendertz, F. H. (2009). Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth, 6, 239-249. https://doi.org/10.1007/s10393-009-0260-y

Khatun, R., Hossain, K. S., Akter, S., Mandal, R. N., & Mandal, B. K. (2019). Entomopathogenic fungus spores in the larval habitat water of Culex quinquefasciatus mosquito in Dhaka city, Bangladesh. Journal of Entomological and Zoology Studies, 7(6), 512-522.

Kolawole, O. M., Ajibola, O. A., & Ogah, I. J. (2018). Prevalence of Rift Valley fever virus in febrile malaria patients using serological and molecular-based evidence. Annals of Science and Technology, 3(1), 1-6. https://doi.org/10.2478/ast-2018-0008

Kolawole, O. M., Seriki, A. A., Irekeola, A. A., & Ogah, J. I. (2018). The neglect and fast spread of some arboviruses: A note for healthcare providers in Nigeria. Diseases, 6(4), 99. https://doi.org/10.3390/diseases6040099

Krambrich, J., Nguyen-Tien, T., Pham-Thanh, L., Dang-Xuan, S., Andersson, E., Höller, P., Vu, D. T., Tran, S. H., Vu, L. T., Akaberi, D., Ling, J., Pettersson, J. H.-O., Hesson, J. C., Lindahl, J. F., & Lundkvist, A. (2024). Study on the temporal and spatial distribution of Culex mosquitoes in Hanoi, Vietnam. Scientific Reports, 14(16573). https://doi.org/10.1038/s41598-024-67438-3

Lamidi, T. B. (2009). Distribution and seasonal abundance of anopheline mosquito species in Nguru, Yobe State, North-eastern Nigeria. Animal Research International, 6(1), 949-952. https://doi.org/10.4314/ari.v6i1.48101

Lindsay, S. W., Davies, M., Alabaster, G., Altamirano, H., Jatta, E., Jawara, M., Carrasco-Tenezaca, M., von Seidlein, L., Shenton, F. C., Tusting, L. S., Wilson, A. L., & Knudsen, J. (2021). Recommendations for building out mosquito-transmitted diseases in sub-Saharan Africa: The DELIVER mnemonic. Philosophical Transactions of the Royal Society B, 376(1818), 20190814. https://doi.org/10.1098/rstb.2019.0814

Madewell, Z. J. (2020). Arboviruses and their vectors. Southern Medical Journal, 113(10), 520-523. https://doi.org/10.14423/SMJ.0000000000001152

Magalhaes, T., Chalegre, K. D. M., Braga, C., & Foy, B. D. (2020). The endless challenges of arboviral diseases in Brazil. Tropical Medicine and Infectious Disease, 5(2), 75. https://doi.org/10.3390/tropicalmed5020075

Mangat, R., & Louie, T. (2023). Arbovirus encephalitides. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560866/

Marchi, S., Trombetta, C. M., & Montomoli, E. (2018). Emerging and re-emerging arboviral diseases as a global health problem. In Public health-emerging and re-emerging issues (pp. 25-46). IntechOpen. https://doi.org/10.5772/intechopen.77382

Meltzer, E. (2012). Arboviruses and viral hemorrhagic fevers (VHF). Infectious Disease Clinics of North America, 26(2), 479-496. https://doi.org/10.1016/j.idc.2012.02.003

Mosquito Forecast. (2024). Nigeria, Damboa. https://www.mosquito-forecast.org/en/forecast/Nigeria/Damboa

Office for the Coordination of Humanitarian Affairs. (2019). Local Government Area settlement profiling, Damboa Town, Damboa LGA, Borno State, Nigeria.

Oluwayelu, D., Adebiyi, A., & Tomori, O. (2018). Endemic and emerging arboviral diseases of livestock in Nigeria: A review. Parasites & Vectors, 11, 337. https://doi.org/10.1186/s13071-018-2911-8

Onoja, B. A., Oguzie, J. U., George, U. E., Asoh, K. E., Ajayi, P., Omofaye, T. F., Igeleke, I. O., Eromon, P., Harouna, S., Parker, E., Adeniji, A. J., & Happi, C. T. (2024). Whole genome sequencing unravels cryptic circulation of divergent dengue virus lineages in the rainforest region of Nigeria. Emerging Microbes & Infections, 13(1), 2307511. https://doi.org/10.1080/22221751.2024.2307511

Onojo, A. B., Maina, M. M., Malgwi, A., Ali, B., David, E., Pewan, S. B., Bala, R. S., Adeiza, A. M., Adamu, A. M., & Adegboye, O. A. (2024). Serological detection of West Nile virus in single-humped camels in Northern Nigeria. Infectious Diseases and Immunity, 0135, 1-3.

Phasomkusolsil, S., Soonwera, M., & Sanguanpong, U. (2013). The volume of blood intake correlates with the number of eggs developed in mosquito vectors. Journal of Medical Entomology, 50(2), 237-242.

Pinto, S. B., Riback, T. I. S., Sylvestre, G., Costa, G., Peixoto, J., Dias, F. B. S., et al. (2021). Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Neglected Tropical Diseases, 15(7), e0009556. https://doi.org/10.1371/journal.pntd.0009556

Prudêncio, M. (2020). In fairness to mosquitoes. Trends in Parasitology, 36(11), 876-877. https://doi.org/10.1016/j.pt.2020.08.003

Rao, R. S., Sundar, S., & Bhattacharya, P. (1981). Anopheles mosquitoes as vectors of Brugia malayi. The Journal of Parasitology, 67(6), 992-994.

Roehrig, J. T., & Lanciotti, R. S. (2009). Arboviruses. In Clinical virology manual (4th ed., pp. 387-407). ASM Press. https://doi.org/10.1128/9781555815974.ch23

Sagay, A. S., Hsieh, S. C., Dai, Y. C., Chang, C. A., Ogwuche, J., Ige, O. O., Kahansim, M. L., Chaplin, B., Imade, G., Elujoba, M., Paul, M., Hamel, D. J., Furuya, H., Khouri, R., Boaventura, V. S., de Moraes, L., Kanki, P. J., & Wang, W. K. (2024). Chikungunya virus antepartum transmission and abnormal infant outcomes in a cohort of pregnant women in Nigeria. International Journal of Infectious Diseases, 139, 92-100. https://doi.org/10.1016/j.ijid.2023.11.036

Samdi, L. M. (2012). A study on the malaria vector (Anopheles species) in a Sudano-sahelian savannah area of Borno State North Eastern Nigeria and the insect growth regulator pyriproxyfen (S-31183) [Doctoral dissertation, University of Jos].

Samdi, L. M., Anyanwu, G. I., Molta, N. B., Awolola, T. S., Oduola, D. O., Obansa, J., Watila, I. M., & Oguche, S. (2006). Determination of malaria vectorial status of Anopheles mosquitoes of the Sahel, Northeastern Nigeria. Journal of Life and Environmental Sciences, 8(1-2).

Tajudeen, Y. A., Oladipo, H. J., Oladunjoye, I. O., Yusuf, R. O., Sodiq, H., Omotosho, A. O., Adesuyi, D. S., Yusuff, S. I., & El-Sherbini, M. S. (2022). Emerging arboviruses of public health concern in Africa: Priorities for future research and control strategies. Challenges, 13(2), 60. https://doi.org/10.3390/challe13020060

Tandina, F., Doumbo, O., Yaro, A. S., Traoré, S. F., Parola, P., & Robert, V. (2018). Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasites & Vectors, 11(467). https://doi.org/10.1186/s13071-018-3045-8

Thongsripong, P., Hyman, J. M., Kapan, D. D., & Bennett, S. N. (2021). Human-mosquito contact: A missing link in our understanding of mosquito-borne disease transmission dynamics. Annals of the Entomological Society of America, 114(4), 397-414. https://doi.org/10.1093/aesa/saab011

Tran, T. D., Nelms, B. M., Koschik, M., Scott, J. J., & Thiemann, T. (2022). Prevalence of filarial parasites in field-caught mosquitoes in northwestern California. Journal of Vector Ecology, 47(1), 61-68. https://doi.org/10.52707/1081-1710-47.1.61

Weetman, D., Kamgang, B., Badolo, A., Moyes, C. L., Shearer, F. M., Coulibaly, M., Pinto, J., Lambrechts, L., & McCall, P. J. (2018). Aedes mosquitoes and Aedes-borne arboviruses in Africa: Current and future threats. International Journal of Environmental Research and Public Health, 15(2), 220. https://doi.org/10.3390/ijerph15020220

Wilder-Smith, A., Lindsay, S. W., Scott, T. W., Ooi, E. E., Gubler, D. J., & Das, P. (2020). The Lancet Commission on dengue and other Aedes-transmitted viral diseases. The Lancet, 395(10241), 1890-1892. https://doi.org/10.1016/S0140-6736(20)31375-1

World Health Organization. (2021). Disease outbreak news: Yellow fever - Nigeria. https://www.who.int/emergencies/disease-outbreak-news/item/2021-DON336

World Health Organization. (2013). Malaria entomology and vector control - guide for participants (pp. 27-28). WHO Press.

World Health Organization. (2013). Malaria entomology and vector control - guide for participants (pp. 43-44). WHO Press.

World Health Organization. (2024). Lymphatic filariasis. https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis

World Health Organization. (2024). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

World Health Organization. (2021). Yellow fever - West and Central Africa. https://www.who.int/es/emergencies/disease-outbreak-news/item/yellow-fever---west-and-central-africa

World Health Organization. (2023). Malaria. https://www.who.int/news-room/fact-sheets/detail/malaria

World Health Organization. (2024). Disease outbreak news: Dengue - global situation. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON518

World Health Organization. (2024). Global Arbovirus Initiative. https://www.who.int/initiatives/global-arbovirus-initiative

Yee, D. A., Bermond, C. D., Reyes-Torres, L. J., Fijman, N. S., Scavo, N. A., Nelson, J., & Yee, S. H. (2022). Robust network stability of mosquitoes and human pathogens of medical importance. Parasites & Vectors, 15(1), 216. https://doi.org/10.1186/s13071-022-05333-4

Published

26-05-2025

How to Cite

Vandu-kwabe, W., Bukbuk, D., Kwabe, C. S., Ogundolie, F. A., & Makolo, D. (2025). Vectorial Diversity of Indoor-resting Mosquitoes in Damboa Town, Borno State, Nigeria: Implications for Disease Transmission and Control Strategies. UMYU Journal of Microbiology Research (UJMR), 9(2). Retrieved from https://ujmr.umyu.edu.ng/index.php/ujmr/article/view/682