Prevalence and Implications of Plasmodium Falciparum Multidrug Resistance Gene Mutations (pfmdr1) Among Pediatric Patients with Malaria in Kano, Nigeria
Keywords:
Malaria, Resistance, Genes, Multidrug, Mutation, PatientAbstract
A genetic indicator of the parasites' vulnerability to anti-malarial medications is the Plasmodium falciparum multidrug resistance gene 1 (pfmdr1). In this study, malaria patients aged 0–14 who were treated at Murtala Muhammad Specialist Hospital in Kano, Nigeria, were evaluated for multidrug-resistant resistance gene 1 (MDR1) mutations. After confirming the malaria parasite density in 100 children's samples, the samples were genotyped using BigDye (v3.1) terminator cycle sequencing to look for two SNPs in pfmdr1 on samples with high and moderate parasite densities. Fisher's exact (FE) tests and Pearson Chi-square were used to evaluate the data. Of the 100 samples, 57% of the patients had low (+) malaria parasite densities, 28% had moderate (++) densities, and 15% had high (+++) densities. Only seven samples were successfully amplified for the pfmdr1 gene located at codon 1246, whereas 31 were successfully amplified and processed for the pfmdr1 gene located at codon 86 with an amplicon size of 534 bp. A pfmdr1-N86Y mutation was found in one sample (3.2%). Additionally, the results indicated no correlation (P = 0.4237) between sex and the pfmdr1 SNP mutation. Nonetheless, there was a significant correlation (P = 0.0043) between the pfmdr1 mutation and the age groups. According to the current study, Kano state in northern Nigeria may have strains of P. falciparum that are less sensitive to the artemisinin component of artemisinin-based combination therapy (ACT). The Plasmodium falciparum parasites' development of this resistance gene puts malaria chemotherapy at serious risk because the parasite will be immune to the widely prescribed anti-malarial medications.
Downloads
References
Abubakar, U. F., Adam, R., Mukhtar, M. M., Muhammad, A., Yahuza, A. A., & Ibrahim, S. S. (2020). Identification of mutations in antimalarial resistance gene Kelch13 from Plasmodium falciparum isolates in Kano, Nigeria. Tropical Medicine and Infectious Disease, 5(2), 85. https://doi.org/10.3390/tropicalmed5020085
Achan, J., Talisuna, A., & Erhart, A. (2011). Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malaria Journal, 10, 144. https://doi.org/10.1186/1475-2875-10-144
Achieng, A. O., Muiruri, P., Ingasia, L. A., Opot, B. H., Juma, D. W., & Yeda, R. (2015). Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. International Journal for Parasitology: Drugs and Drug Resistance, 5, 92–99. https://doi.org/10.1016/j.ijpddr.2015.05.005
Adamu, A., Jada, M. S., Haruna, H. M. S., Yakubu, B. O., Ibrahim, M. A., Balogun, E. O., Sakura, T., Inaoka, D. K., Kita, K., Hirayama, K., Culleton, R., & Shuaibu, M. N. (2020). Plasmodium falciparum multidrug resistance gene-1 polymorphisms in Northern Nigeria: Implications for the continued use of artemether-lumefantrine in the region. Malaria Journal, 19(1), 439. https://doi.org/10.1186/s12936-020-03506-z
Agrawal, S., Moser, K. A., Morton, L., Cummings, M. P., Parihar, A., Dwivedi, A., Shetty, A. C., Drabek, E. F., Jacob, C. G., & Henrich, P. P. (2017). Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. Journal of Infectious Diseases, 216, 468–476. https://doi.org/10.1093/infdis/jix334
Al-Koofee, A. F., & Mubarak, M. H. S. (2020). Genetic polymorphisms. In M. Çalışkan, O. Erol, & G. C. Öz (Eds.), Recent topics in genetic polymorphisms (pp. 1–18). IntechOpen. https://doi.org/10.5772/intechopen.88063
Amaratunga, C., Lim, P., Suon, S., Sreng, S., Mao, S., Sopha, C., Sam, B., Dek, D., Try, V., & Amato, R. (2016). Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: A multisite prospective cohort study. Lancet Infectious Diseases, 16, 357. https://doi.org/10.1016/S1473-3099(15)00487-9
Amato, D. R., Lim, P., Miotto, O., Amaratunga, C., Dek, D., Pearson, R. D., Almagro-Garcia, J., Neal, A. T., Sreng, S., & Suon, S. (2017). Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: A genotype-phenotype association study. Lancet Infectious Diseases, 17, 164–173. https://doi.org/10.1016/S1473-3099(16)30409-1
Antinori, S., Galimberti, L., Milazzo, L., & Corbellino, M. (2012). Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterranean Journal of Hematology and Infectious Diseases, 4, e2012013. https://doi.org/10.4084/mjhid.2012.013
Apinjoh, T. O., Mugri, R. N., Miotto, O., Chi, H. F., Tata, R. B., Anchang-Kimbi, J. K., Fon, E. M., Tangoh, D. A., Nyingchu, R. V., & Jacob, C. (2017). Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide-treated net coverage along the slope of Mount Cameroon: Cross-sectional study. Infectious Diseases of Poverty, 6, 136. https://doi.org/10.1186/s40249-017-0350-y
Ariey, F., Randrianarivelojosia, M., & Duchemin, J. B. (2002). Mapping of a Plasmodium falciparum pfcrt K76T mutation: A useful strategy for controlling chloroquine resistance in Madagascar. Journal of Infectious Diseases, 185, 710–712. https://doi.org/10.1086/339000
Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.-C., Khim, N., Kim, S., Duru, V., Bouchier, C., & Ma, L. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505, 50–55. https://doi.org/10.1038/nature12876
Ashley, E. A., Pyae Phyo, A., & Woodrow, C. J. (2018). Malaria. Lancet, 391, 1608–1621. https://doi.org/10.1016/S0140-6736(18)30324-6
Auparakkitanon, S., Chapoomram, S., Kuaha, K., Chirachariyavej, T., & Wilairat, P. (2006). Targeting of hematin by the anti-malarial pyronaridine. Antimicrobial Agents and Chemotherapy, 50(6), 2197–2200. https://doi.org/10.1128/AAC.00119-06
Barker, R. H., Courval, J. M., Banchongaksorn, T., Wirth, D. F., Rimwungtragoon, K., & Suwonkerd, W. (1992). A simple method to detect Plasmodium falciparum directly from blood samples using the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene, 46(4), 416–426. https://doi.org/10.4269/ajtmh.1992.46.416
Bello, A. S., Abdullahi, N., Abdullahi, H., & Imam, A. A. (2019). Molecular markers of resistance among malaria paediatric patients attending public health hospital in Kano State-Nigeria. Malaysian Journal of Biochemistry and Molecular Biology, 3, 22–26.
Berzosa, P., Esteban-Cantos, A., García, L., González, V., Navarro, M., & Fernández, T. (2017). Profile of molecular mutations in pfdhfr, pfdhps, pfmdr1, and pfcrt genes of Plasmodium falciparum related to resistance to different anti-malarial drugs in the Bata District (Equatorial Guinea). Malaria Journal, 16, 1–10. https://doi.org/10.1186/s12936-016-1672-0
Blasco, B., Leroy, D., & Fidock, D. A. (2017). Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nature Medicine, 23, 917-928. https://doi.org/10.1038/nm.4381
Bridgford, J. L., Xie, S. C., Cobbold, S. A., Pasaje, C. F. A., Herrmann, S., ... & Tilley, L. (2018). Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nature Communications, 9, 3801. https://doi.org/10.1038/s41467-018-06221-1
Ceesay, S. J., Casals-Pascual, C., Erskine, J., Anya, S. E., Duah, N. O., Fulford, A. J., ... & Conway, D. J. (2008). Changes in malaria indices between 1999 and 2007 in the Gambia: A retrospective analysis. Lancet, 372, 1545-1554. https://doi.org/10.1016/S0140-6736(08)61654-2
Centers for Disease Control and Prevention. (2016). The history of malaria, an ancient disease. Division of Parasitic Diseases and Malaria.
Cowman, A., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria, biology and disease. Cell, 167, 610-624. https://doi.org/10.1016/j.cell.2016.07.055
Cravo, P., Napolitano, H., & Culleton, R. (2015). How genomics is contributing to the fight against artemisinin-resistant malaria parasites. Acta Tropica, 148, 1-7. https://doi.org/10.1016/j.actatropica.2015.04.007
Das, S., Tripathy, S., Chattopadhayay, S., Das, B., Kar Mahapatra, S., Hati, A. K., et al. (2017). Progressive increase in point mutations associates chloroquine resistance: Even after withdrawal of chloroquine use in India. International Journal for Parasitology: Drugs and Drug Resistance, 7, 251–261. https://doi.org/10.1016/j.ijpddr.2017.06.002
Dhiman, S. (2019). Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infectious Diseases of Poverty, 8, 14. https://doi.org/10.1186/s40249-019-0524-x
Dokunmu, T. M., Adjekukor, C. U., Yakubu, O. F., Bello, A. O., Adekoya, J. O., Akinola, O., Amoo, E. O., & Adebayo, A. H. (2019). Asymptomatic malaria infections and Pfmdr1 mutations in an endemic area of Nigeria. Malaria Journal, 18(1), 218. https://doi.org/10.1186/s12936-019-2833-8
Dondorp, A. M., Yeung, S., & White, L. (2010). Artemisinin resistance: Current status and scenarios for containment. Nature Reviews Microbiology, 8(4), 272-280. https://doi.org/10.1038/nrmicro2331
Duah, N. O., Matrevi, S. A., De Souza, D. K., Binnah, D. D., Tamakloe, M. M., Opoku, V. S., et al. (2013). Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malaria Journal, 12, 377. https://doi.org/10.1186/1475-2875-12-377
Happi, C. T., Gbotosho, G. O., Folarin, O. A., Sowunmi, A., Hudson, T., & O'Neil, M. (2009). Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrobial Agents and Chemotherapy, 53, 888-895. https://doi.org/10.1128/AAC.00968-08
Houben, C. H., Fleischmann, H., & Gückel, M. (2013). Malaria prevalence in north-eastern Nigeria: A cross-sectional study. Asian Pacific Journal of Tropical Medicine, 6, 865-868. https://doi.org/10.1016/S1995-7645(13)60154-6
Ibraheem, Z. O., Abd Majid, R., Noor, S. M., Sedik, H. M., & Basir, R. (2014). Role of different Pfcrt and Pfmdr-1 mutations in conferring resistance to antimalarial drugs in Plasmodium falciparum. Malaria Research and Treatment, 2014, 950424. https://doi.org/10.1155/2014/950424
Ismail, H. M., Barton, V., Phanchana, M., Charoensutthivarakul, S., & Wong, M. H. (2016). Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proceedings of the National Academy of Sciences, 113, 2080-2085. https://doi.org/10.1073/pnas.1600459113
Jiraprapa, W., Salenna, E., Huji, X., & Michael, F. (2002). Immunity to asexual blood stage malaria and vaccine approaches. Immunology and Cell Biology, 80, 401-414. https://doi.org/10.1046/j.1440-1711.2002.01107.x
Josling, G. A., & Llinás, M. (2015). Sexual development in Plasmodium parasites: Knowing when it's time to commit. Nature Reviews Genetics, 13, 573-587. https://doi.org/10.1038/nrmicro3519
Krettli, A. U., & Miller, L. H. (2001). Malaria: A sporozoite runs through it. Current Biology, 11(10), R409-R412. https://doi.org/10.1016/S0960-9822(01)00221-4
Li, W., Mo, W., Shen, D., Sun, L., & Wang, J. (2015). Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLOS Genetics, 1, e36. https://doi.org/10.1371/journal.pgen.0010036
Mawili-Mboumba, D. P., Akotet, M. R., Kendjo, E., Nzamba, J., Medang, M. O., Mbina, J. M., & Kombila, M. (2013). Increase in malaria prevalence and age at risk population in different areas of Gabon. Malaria Journal, 12, 3. https://doi.org/10.1186/1475-2875-12-3
Moyeh, M. N., Njimoh, D. L., Evehe, M. S., Ali, I. M., Nji, A. M., Nkafu, D. N., et al. (2018). Effects of drug policy changes on evolution of molecular markers of Plasmodium falciparum resistance to chloroquine, amodiaquine, and sulphadoxine-pyrimethamine in the South West Region of Cameroon. Malaria Research and Treatment, 2018, 7071383. https://doi.org/10.1155/2018/7071383
Murray, C. (2009). Diagnosis of malaria. In E. L. Baron & J. Daily (Eds.), UpToDate 19.3 [desktop application].
Mustapha, U., Shehu, A., Ayuba, A. S., Gomma, H., Garba, S. N., Usman, U. S., Alasan, B. B., Garba, F. B., Harun, A. J., Yunusa, A., Magaji, S., & Dauda, S. A. (2023). Prevalence of multidrug resistance malaria among patients aged 0–14 years attending Murtala Muhammad Specialist Hospital Kano State, Nigeria. International Journal of Biological and Pharmaceutical Sciences Archive, 6(2), 37–46. https://doi.org/10.53771/ijbpsa.2023.6.2.0089
National Institute of Allergy and Infectious Diseases. (2007). Understanding malaria: Fighting an ancient scourge (No. 07-7139). U.S. Department of Health and Human Services.
Nicoletta, B., Roberta, S., & Sarah, D. (2015). Malaria diagnosis, therapy, vaccines, and vector control. In M. Prato (Ed.), Human and mosquito lysozymes (pp. 111-132). Springer.
Noland, G. S., Graves, P. M., Adamu, S., Abel, E., Emmanuel, E., ... & Richards, F. O. (2014). Malaria prevalence, anaemia and baseline intervention coverage prior to mass net distributions in Abia and Plateau States, Nigeria. BMC Infectious Diseases, 14, 168. https://doi.org/10.1186/1471-2334-14-168
Ogah, A. O., Ezeonwumelu, J. O. C., Okoruwa, A. G., Adiukwu, C. P., Ajayi, A. M., & Akib, S. (2013). Manifestations of severe malaria among the under-five children attending Kampala International University Teaching Hospital Bushenyi Western Uganda: Pilot study. British Journal of Pharmacology and Toxicology, 4, 128-135. https://doi.org/10.19026/bjpt.4.5390
Okell, L. C., Reiter, L. M., Ebbe, L. S., Baraka, V., Bisanzio, D., Watson, O. J., et al. (2018). Emerging implications of policies on malaria treatment: Genetic changes in the Pfmdr1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Global Health, 3, e000999. https://doi.org/10.1136/bmjgh-2018-000999
Okungbowa, M. A., & Mordi, R. M. (2013). Prevalence and distribution of malaria, Pfcrt, Pfmdr 1 genes in Benin Metropolis, Edo State, Nigeria. Nigerian Journal of Parasitology, 34(2), 47-54.
Oladipo, O. O., Wellington, O. A., & Sutherland, C. J. (2015). Persistence of chloroquine-resistant haplotypes of Plasmodium falciparum in children with uncomplicated malaria in Lagos, Nigeria, four years after change of chloroquine as first-line anti-malarial medicine. Diagnostic Pathology, 10, 41. https://doi.org/10.1186/s13000-015-0276-2
Onwuemele, A. (2014). An assessment of the spatial pattern of malaria infection in Nigeria. International Journal of Medicine and Medical Sciences, 6, 80-86. https://doi.org/10.5897/IJMMS2013.1006
Pan American Health Organization. (2018). Epidemiological alert: Increase of malaria in the Americas.
Poilane, I., Jeantils, V., & Carbillon, L. (2009). Découverte fortuite de paludisme à Plasmodium falciparum au cours de la grossesse: À propos de deux cas. Gynécologie Obstétrique & Fertilité, 37(10), 824-826. https://doi.org/10.1016/j.gyobfe.2009.07.011
Po'voa, M. M., Adagu, I. S., & Oliveira, S. G. (1998). Pfmdr1 Asn1042Asp and Asp1246Tyr polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and -sensitive Brazilian field isolates of Plasmodium falciparum. Experimental Parasitology, 88, 64-68. https://doi.org/10.1006/expr.1998.4195
Ricardo, T., Parisa, K., Katherine, A., & Douglas, G. (2014). Plasmodium life cycle and the pathogenesis of malaria. From innate sensing of malaria parasites. Nature Reviews Immunology, 14, 744-757. https://doi.org/10.1038/nri3742
Rupashree, S., Jamila, M., Sanjay, S., & Ukatu, V. E. (2014). Knowledge, attitude and practices on malaria among the rural communities in Aliero, Northern Nigeria. Journal of Family Medicine and Primary Care, 3(1), 39-44. https://doi.org/10.4103/2249-4863.130271
Sá, J. M., Twu, O., Hayton, K., Reyes, S., Fay, M. P., Ringwald, P., & Wellems, T. E. (2009). Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proceedings of the National Academy of Sciences, 106, 18883. https://doi.org/10.1073/pnas.0911317106
Samdi, L. M., Ajayi, J. A., Oguche, S., & Ayanlade, A. (2012). Seasonal variation of malaria parasite density in pediatric population of Northeastern Nigeria. Global Journal of Health Science, 4, 103-109. https://doi.org/10.5539/gjhs.v4n2p103
Simon-Oke, I. A., Obimakinde, E. T., & Afolabi, O. J. (2017). Prevalence and distribution of malaria, Pfcrt and Pfmdr 1 genes in patients attending FUT Health Centre, Akure, Nigeria. Beni-Suef University Journal of Basic and Applied Sciences, 7(1). https://doi.org/10.1016/j.bjbas.2017.07.009
Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews, 26, 165-184. https://doi.org/10.1128/CMR.00079-12
Sisowath, C., Strömberg, J., Mårtensson, A., Msellem, M., Obondo, C., Björkman, A., & Gil, J. P. (2005). In vivo selection of Plasmodium falciparum pfmdr1 86 N coding alleles by artemether-lumefantrine (Coartem). Journal of Infectious Diseases, 191, 1014–1017. https://doi.org/10.1086/427997
Soulard, V., Bosson-Vanga, H., Lorthiois, A., Roucher, C., Franetich, J. F., Zanghi, G., Bordessoulles, M., Tefit, M., Thellier, M., & Morosan, S. (2015). Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nature Communications, 6, 7690. https://doi.org/10.1038/ncomms8690
Szmitko, P., Kohn, M. L., & Simor, A. E. (2008). Plasmodium falciparum malaria occurring eight years after leaving an endemic area. Diagnostic Microbiology and Infectious Disease, 61(1), 105-107. https://doi.org/10.1016/j.diagmicrobio.2008.08.017
Theunissen, C., Janssens, P., & Demulder, A. (2009). Falciparum malaria in patient 9 years after leaving malaria-endemic area. Emerging Infectious Diseases, 15(1), 115-116. https://doi.org/10.3201/eid1501.080909
Tu, Y. (2016). Artemisinin—A gift from traditional Chinese medicine to the world (Nobel lecture). Angewandte Chemie International Edition, 55, 10210-10226. https://doi.org/10.1002/anie.201601967
Udoh, S. B., Hamidu, I. M., & Saleh, A. H. (2016). Seasonal prevalence of malaria parasites infection in Maiduguri, Borno State, North East, Nigeria. Scholarly Journal of Biological Science, 5(1), 52-55.
Umotong, A. B., Ezedinachi, E. N., Okerengwo, A. A., Usanga, E. A., Udo, J. J., & Williams, A. I. (1991). Correlation between in vivo and in vitro response of chloroquine-resistant Plasmodium falciparum in Calabar, south-eastern Nigeria. Addictive Behaviors Reports, 49(2), 119-125. https://doi.org/10.1016/0001-706X(91)90059-S
Veiga, M. I., Dhingra, S. K., Henrich, P. P., Straimer, J., Gnädig, N., Uhlemann, A. C., et al. (2016). Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nature Communications, 7, 11553. https://doi.org/10.1038/ncomms11553
Vuk, I., Rajic, Z., & Zorc, B. (2008). Malaria and antimalarial drugs. Farm Glas, 64, 51-60.
Walker, N., Nadjm, B., & Whitty, C. (2017). Malaria. Medicine, 42, 52-58. https://doi.org/10.1016/j.mpmed.2017.10.012
Wang, J., Zhang, C. J., Chia, W. N., Loh, C. C., & Li, Z. (2015). Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nature Communications, 6, 10111. https://doi.org/10.1038/ncomms10111
White, N. J., Pongtavornpinyo, W., Maude, R. J., Saralamba, S., Aguas, R., & Stepniewska, K. (2014). Hyperparasitaemia and low dosing are an important source of antimalarial drug resistance. Malaria Journal, 8, 253. https://doi.org/10.1186/1475-2875-8-253
Wong, W., Bai, X.-C., Sleebs, B. E., Triglia, T., Brown, A., ... & Cowman, A. F. (2017). Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2, 17031. https://doi.org/10.1038/nmicrobiol.2017.31
World Health Organization. (2012). Management of severe malaria: A practical handbook (3rd ed.).
World Health Organization. (2013a). WHO policy brief for the implementation of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP) (revised January 2019). https://www.who.int/malaria/publications/atoz/iptp-sp-updated-policy-brief-24jan2019.pdf
World Health Organization. (2013b). Emergency response to artemisinin resistance in the Greater Mekong subregion: Regional framework for action 2013-2015. https://apps.who.int/iris/bitstream/handle/10665/79940/9789241505321_eng.pdf
World Health Organization. (2013c). Training module on malaria control: Malaria entomology and vector control. Guide for participants.
World Health Organization. (2015a). Guidelines for the treatment of malaria (3rd ed.). https://apps.who.int/iris/bitstream/handle/10665/162441/9789241549127_eng.pdf
World Health Organization. (2015b). Global technical strategy for malaria 2016-2030. https://apps.who.int/iris/bitstream/handle/10665/176712/9789241564991_eng.pdf
World Health Organization. (2018). World malaria report 2018. http://kff.org/world-malaria-report/factsheet/the-global-malaria-epidemic
World Health Organization. (2021). World malaria report 2021. https://www.who.int/news-room/fact-sheets/detail/malaria
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ummukulsum Mustapha, Ado Shehu, Yunusa Ahmad, Usman Usman Sanusi, Yusuf Misau Abdu, Attahir Ayuba Sa’ad, Aliyu Maigoro Muhammad, Abdullahi Ibrahim Haruna, Haddad Muhammad Mahfuz, Fatima Yakubu Zubairu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.