Green Synthesis, Optimization, and Characterization of Copper Nanoparticles Using a Combined Extract of Selected Plant Seeds

Authors

  • Aliyu Shehu Department of Chemistry, Federal University Dutsin-ma, Katsina state, Nigeria https://orcid.org/0000-0002-0673-7367
  • Okunola Oluwole Joshua Department of Chemistry, Federal University Dutsin-ma, Katsina state, Nigeria
  • Uduma A Uduma Department of Chemistry, Federal University Dutsin-ma, Katsina state, Nigeria

Keywords:

Optimization, Characterization, Biogenic, Antibacterial, Acinetobacter baumannii, Escherichia Coli, Nanoparticles

Abstract

Study’s Excerpt:
• CuNPs were synthesized using neem, black seed, and baobab extracts through a green Taguchi method.
• UV-Vis at 590.10 nm and FTIR peaks confirmed CuNPs capped with plant-based phytochemicals.
• Crystalline spherical CuNPs (25.51 nm) were revealed by XRD and SEM with effective surface capping.
• CuNPs inhibited E. coli (19 mm) and A. baumannii (17 mm), showing strong antimicrobial activity.
• Future studies should test cytotoxicity, scale-up, and expand antimicrobial spectrum of CuNPs.
Full Abstract:
This work investigates a verde method involving synthesizing, optimizing, and characterizing copper nanoparticles (CuNPs) developed from black seed, neem seed, and baobab seed extracts. The optimal synthesis conditions were investigated by means of a Taguchi method. UV-Vis spectroscopy was used to confirm the formation of CuNPs, which exhibited an SPR peak of 590.10 nm (Fig. 1b), indicating the nanoparticles' presence. Characteristic peaks at 566.65, 984.04, 1088.47, 1632.62, 2117.12, and 3265.16 cm⁻¹ were observed, attributing to Cu-O and Cu-OH and Cu-O-C bonds, as well as hydroxyl and carbon dioxide functional groups, indicating an effective capping and stabilization of the nanoparticles by plant phytochemicals (FTIR analysis). The crystalline nature of CuNPs has been confirmed using X-ray diffraction analysis, which gave diffraction peaks at 22.43°, 47.07°, 67.12°, and 87.33°. The particle size was found to be 25.51 nm. The particles exhibited a mostly spherical shape with some degeneracy when analyzed by scanning electron microscopy (SEM), and the elemental composition (EDX) characterized a copper content of 45.3% and additional plant-derived stabilizing agents, such as carbon, oxygen, and trace elements. Besides, the antimicrobial assay showed potent inhibitory effects on multiple microbes that are all pathogenic. The CuNPs showed significant antibacterial activity, exhibiting maximum inhibition zones against Acinetobacter baumannii (17 mm) and Escherichia coli (19 mm). These results emphasize the potential of biogenically synthesized CuNPs as potential antimicrobial agents, which should provide a sustainable alternative for biomedical and pharmaceutical applications.

Downloads

Download data is not yet available.

References

Adam, O. A. U., Abadi, R. S. M., & Ayoub, S. M. H. (2019). The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. The Journal of Phytopharmacology, 8(5), 248-252. https://doi.org/10.31254/phyto.2019.8507

Alavi, M., & Karimi, N. (2018). Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artificial Cells, Nanomedicine, and Biotechnology, 46(8). https://doi.org/10.1080/21691401.2017.1408121

Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04636

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897-4919. https://doi.org/10.1016/j.arabjc.2016.10.004

Atri, A., Echabaane, M., Bouzidi, A., Harabi, I., Mari Soucase, B., & Ben Chaâbane, R. (2023). Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13484

Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y.-K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011

Banger, A., Kumari, A., Jangid, N. K., Jadoun, S., Srivastava, A., & Srivastava, M. (2025). A review on green synthesis and characterisation of copper nanoparticles using plant extracts for biological applications. Environmental Technology Reviews, 14(1), 94-126. https://doi.org/10.1080/21622515.2025.2453950

Batool, F., Shahid, M., Mahmood, F., Shahzad, T., Azeem, F., Hussain, S., Algarni, T. S., Elshikh, M. S., Al-Onazi, W. A., & Mustafa, S. (2024). Biosynthesis of copper nanoparticles using Bacillus flexus and estimation of their potential for decolorization of azo dyes and textile wastewater treatment. Journal of King Saud University - Science, 36(8), 103309. https://doi.org/10.1016/j.jksus.2024.103309

Dalal, N., Boruah, B. S., Neoh, A., & Biswas, R. (2019). Correlation of surface plasmon resonance wavelength (SPR) with size and concentration of noble metal nanoparticles. Annals of Reviews and Research, 5(2), Article 555658. https://doi.org/10.19080/ARR.2019.05.555658

Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K., & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902

Dlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. (2021). Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. International Journal of Environmental Research and Public Health, 16(12), 2185. https://doi.org/10.3390/ijerph16122185

Ginting, B., Maulana, I., & Karnila, I. (2020). Biosynthesis of copper nanoparticles using Blumea balsamifera leaf extracts: Characterization of its antioxidant and cytotoxicity activities. Surfaces and Interfaces, 21, 100799. https://doi.org/10.1016/j.surfin.2020.100799

Habibah, F. F., Rizki, W. O. S., Ivansyah, A. L., Astuti, D. I., & Hertadi, R. (2024). Green synthesis of copper ions nanoparticles functionalized with rhamnolipid as potential antibacterial agent for pathogenic bacteria. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e24242

Hona, S., Dangol, R., Ghatane, J., Giri, D., & Pradhananga, R. R. (2019). Antimicrobial effect of copper nanoparticles synthesized by chemical method. International Journal of Applied Sciences and Biotechnology, 7(4), 421-428. https://doi.org/10.3126/ijasbt.v7i4.26295

Kazemi, S., Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 24(1). https://doi.org/10.1016/j.mtsust.2023.100500

Kimber, R. L., Smith, K., Bagshaw, H., Joshi, N., Pattrick, R. A. D., Lloyd, J. R., Lewis, E. A., Haigh, S. J., Parmeggiani, F., Turner, N. J., Starborg, T., Figueroa, A. I., van der Laan, G., Cibin, G., & Gianolio, D. (2018). Biosynthesis and characterization of catalytically active copper nanoparticles using Shewanella oneidensis. Small, 14(16), 1703145. https://doi.org/10.1002/smll.201703145

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Melkamu, W. W., & Feleke, E. G. (2022). Green synthesis of copper oxide nanoparticles using leaf extract of Justicia schimperiana and their antibacterial activity. Research Square. https://doi.org/10.21203/rs.3.rs-2020143/v1

Nasrollahzadeh, M., Momeni, S. S., & Sajadi, S. M. (2017). Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. Journal of Colloid and Interface Science, 506, 471-477. https://doi.org/10.1016/j.jcis.2017.07.072

Patel, B. H., Channiwala, M. Z., Chaudhari, S. B., & Mandot, A. A. (2016). Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. Journal of Environmental Chemical Engineering, 4(2), 2163-2169. https://doi.org/10.1016/j.jece.2016.03.046

Ponmurugan, P., Manjukarunambika, K., Elango, V., & Mythili, B. G. (2016). Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. Journal of Experimental Nanoscience. https://doi.org/10.1080/17458080.2016.1184766

Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R., & Angaiah, S. (2020). Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 43, 1649-1657. https://doi.org/10.1007/s00449-020-02357-x

Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., & Reddy, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik, 157, 1110-1116. https://doi.org/10.1016/j.ijleo.2017.10.074

Rambau, U., Masevhe, N. A., & Samie, A. (2024). Green synthesis of gold and copper nanoparticles by Lannea discolor: Characterization and antibacterial activity. Inorganics, 12(2), 36. https://doi.org/10.3390/inorganics12020036

Mahmoodi, S., Elmi, A., & Hallaj Nezhadi, S. (2018). Copper nanoparticles as antibacterial agents. Journal of Molecular Pharmaceutics & Organic Process Research, 6(1). https://doi.org/10.4172/2329-9053.1000140

Sampaio, S., & Viana, J. C. (2021). Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Materials Science and Engineering: B, 263, 114807. https://doi.org/10.1016/j.mseb.2020.114807

Shehu, A., Okunola, O. J., & Uduma, A. U. (2025). Biogenic synthesis, optimization, and characterization of novel silver nanoparticle using combined seed extracts. Scientia Africana, 24(1), Article 19. https://dx.doi.org/10.4314/sa.v24i1.19

Shukri, Z. N. A., Chik, C. E. N. C. E., Hossain, S., Othman, R., Endut, A., Lananan, F., Terkula, I. B., Kamaruzzan, A. S., Rahim, A. I. A., & Draman, A. S. (2022). A novel study on the effectiveness of bioflocculant-producing bacteria Bacillus enclensis, isolated from biofloc-based system as a biodegrader in microplastic pollution. Chemosphere, 308(Pt 2). https://doi.org/10.1016/j.chemosphere.2022.136410

Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núñez, G., Rivero, I. A., Gochi-Ponce, Y., & Flores-López, L. Z. (2017). A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. Journal of Saudi Chemical Society, 21(3), 341-348. https://doi.org/10.1016/j.jscs.2016.10.005

Tavallali, V., Tavallali, H., Mazraeh, A., & Dashti Darvishzadeh, M. (2024). Critical role of neem and jujube extracts in stabilizing copper nanostructures: A comparative study in green synthesis of CuNSs. Current Research in Green and Sustainable Chemistry, 9, 100437. https://doi.org/10.1016/j.crgsc.2024.100437

Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, R. V. (2021). Isolation and optimization of culture conditions of a bioflocculant passivated copper nanoparticles in bioflocculant-producing fungi from Kombucha tea SCOBY. Microbiology Research, 12(4), 950-966. https://doi.org/10.3390/microbiolres12040070

Ullah, N., Ullah, A., & Rasheed, S. (2020). Green synthesis of copper nanoparticles using extract of Dicliptera roxburghiana, their characterization and photocatalytic activity against methylene blue degradation. Letters in Applied NanoBioScience, 9(1), 897-901. https://doi.org/10.33263/LIANBS91.897901

Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336

Published

25-05-2025

How to Cite

Shehu, A., Joshua, O. O., & Uduma, U. A. (2025). Green Synthesis, Optimization, and Characterization of Copper Nanoparticles Using a Combined Extract of Selected Plant Seeds. UMYU Journal of Microbiology Research (UJMR), 9(2). Retrieved from https://ujmr.umyu.edu.ng/index.php/ujmr/article/view/742