Green Synthesis, Optimization, and Characterization of Copper Nanoparticles Using a Combined Extract of Selected Plant Seeds
Keywords:
Optimization, Characterization, Biogenic, Antibacterial, Acinetobacter baumannii, Escherichia Coli, NanoparticlesAbstract
Study’s Excerpt:
• CuNPs were synthesized using neem, black seed, and baobab extracts through a green Taguchi method.
• UV-Vis at 590.10 nm and FTIR peaks confirmed CuNPs capped with plant-based phytochemicals.
• Crystalline spherical CuNPs (25.51 nm) were revealed by XRD and SEM with effective surface capping.
• CuNPs inhibited E. coli (19 mm) and A. baumannii (17 mm), showing strong antimicrobial activity.
• Future studies should test cytotoxicity, scale-up, and expand antimicrobial spectrum of CuNPs.
Full Abstract:
This work investigates a verde method involving synthesizing, optimizing, and characterizing copper nanoparticles (CuNPs) developed from black seed, neem seed, and baobab seed extracts. The optimal synthesis conditions were investigated by means of a Taguchi method. UV-Vis spectroscopy was used to confirm the formation of CuNPs, which exhibited an SPR peak of 590.10 nm (Fig. 1b), indicating the nanoparticles' presence. Characteristic peaks at 566.65, 984.04, 1088.47, 1632.62, 2117.12, and 3265.16 cm⁻¹ were observed, attributing to Cu-O and Cu-OH and Cu-O-C bonds, as well as hydroxyl and carbon dioxide functional groups, indicating an effective capping and stabilization of the nanoparticles by plant phytochemicals (FTIR analysis). The crystalline nature of CuNPs has been confirmed using X-ray diffraction analysis, which gave diffraction peaks at 22.43°, 47.07°, 67.12°, and 87.33°. The particle size was found to be 25.51 nm. The particles exhibited a mostly spherical shape with some degeneracy when analyzed by scanning electron microscopy (SEM), and the elemental composition (EDX) characterized a copper content of 45.3% and additional plant-derived stabilizing agents, such as carbon, oxygen, and trace elements. Besides, the antimicrobial assay showed potent inhibitory effects on multiple microbes that are all pathogenic. The CuNPs showed significant antibacterial activity, exhibiting maximum inhibition zones against Acinetobacter baumannii (17 mm) and Escherichia coli (19 mm). These results emphasize the potential of biogenically synthesized CuNPs as potential antimicrobial agents, which should provide a sustainable alternative for biomedical and pharmaceutical applications.
Downloads
References
Adam, O. A. U., Abadi, R. S. M., & Ayoub, S. M. H. (2019). The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. The Journal of Phytopharmacology, 8(5), 248-252. https://doi.org/10.31254/phyto.2019.8507
Alavi, M., & Karimi, N. (2018). Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artificial Cells, Nanomedicine, and Biotechnology, 46(8). https://doi.org/10.1080/21691401.2017.1408121
Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04636
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897-4919. https://doi.org/10.1016/j.arabjc.2016.10.004
Atri, A., Echabaane, M., Bouzidi, A., Harabi, I., Mari Soucase, B., & Ben Chaâbane, R. (2023). Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13484
Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y.-K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
Banger, A., Kumari, A., Jangid, N. K., Jadoun, S., Srivastava, A., & Srivastava, M. (2025). A review on green synthesis and characterisation of copper nanoparticles using plant extracts for biological applications. Environmental Technology Reviews, 14(1), 94-126. https://doi.org/10.1080/21622515.2025.2453950
Batool, F., Shahid, M., Mahmood, F., Shahzad, T., Azeem, F., Hussain, S., Algarni, T. S., Elshikh, M. S., Al-Onazi, W. A., & Mustafa, S. (2024). Biosynthesis of copper nanoparticles using Bacillus flexus and estimation of their potential for decolorization of azo dyes and textile wastewater treatment. Journal of King Saud University - Science, 36(8), 103309. https://doi.org/10.1016/j.jksus.2024.103309
Dalal, N., Boruah, B. S., Neoh, A., & Biswas, R. (2019). Correlation of surface plasmon resonance wavelength (SPR) with size and concentration of noble metal nanoparticles. Annals of Reviews and Research, 5(2), Article 555658. https://doi.org/10.19080/ARR.2019.05.555658
Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K., & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902
Dlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. (2021). Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. International Journal of Environmental Research and Public Health, 16(12), 2185. https://doi.org/10.3390/ijerph16122185
Ginting, B., Maulana, I., & Karnila, I. (2020). Biosynthesis of copper nanoparticles using Blumea balsamifera leaf extracts: Characterization of its antioxidant and cytotoxicity activities. Surfaces and Interfaces, 21, 100799. https://doi.org/10.1016/j.surfin.2020.100799
Habibah, F. F., Rizki, W. O. S., Ivansyah, A. L., Astuti, D. I., & Hertadi, R. (2024). Green synthesis of copper ions nanoparticles functionalized with rhamnolipid as potential antibacterial agent for pathogenic bacteria. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e24242
Hona, S., Dangol, R., Ghatane, J., Giri, D., & Pradhananga, R. R. (2019). Antimicrobial effect of copper nanoparticles synthesized by chemical method. International Journal of Applied Sciences and Biotechnology, 7(4), 421-428. https://doi.org/10.3126/ijasbt.v7i4.26295
Kazemi, S., Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 24(1). https://doi.org/10.1016/j.mtsust.2023.100500
Kimber, R. L., Smith, K., Bagshaw, H., Joshi, N., Pattrick, R. A. D., Lloyd, J. R., Lewis, E. A., Haigh, S. J., Parmeggiani, F., Turner, N. J., Starborg, T., Figueroa, A. I., van der Laan, G., Cibin, G., & Gianolio, D. (2018). Biosynthesis and characterization of catalytically active copper nanoparticles using Shewanella oneidensis. Small, 14(16), 1703145. https://doi.org/10.1002/smll.201703145
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Melkamu, W. W., & Feleke, E. G. (2022). Green synthesis of copper oxide nanoparticles using leaf extract of Justicia schimperiana and their antibacterial activity. Research Square. https://doi.org/10.21203/rs.3.rs-2020143/v1
Nasrollahzadeh, M., Momeni, S. S., & Sajadi, S. M. (2017). Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. Journal of Colloid and Interface Science, 506, 471-477. https://doi.org/10.1016/j.jcis.2017.07.072
Patel, B. H., Channiwala, M. Z., Chaudhari, S. B., & Mandot, A. A. (2016). Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. Journal of Environmental Chemical Engineering, 4(2), 2163-2169. https://doi.org/10.1016/j.jece.2016.03.046
Ponmurugan, P., Manjukarunambika, K., Elango, V., & Mythili, B. G. (2016). Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. Journal of Experimental Nanoscience. https://doi.org/10.1080/17458080.2016.1184766
Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R., & Angaiah, S. (2020). Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 43, 1649-1657. https://doi.org/10.1007/s00449-020-02357-x
Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., & Reddy, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik, 157, 1110-1116. https://doi.org/10.1016/j.ijleo.2017.10.074
Rambau, U., Masevhe, N. A., & Samie, A. (2024). Green synthesis of gold and copper nanoparticles by Lannea discolor: Characterization and antibacterial activity. Inorganics, 12(2), 36. https://doi.org/10.3390/inorganics12020036
Mahmoodi, S., Elmi, A., & Hallaj Nezhadi, S. (2018). Copper nanoparticles as antibacterial agents. Journal of Molecular Pharmaceutics & Organic Process Research, 6(1). https://doi.org/10.4172/2329-9053.1000140
Sampaio, S., & Viana, J. C. (2021). Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Materials Science and Engineering: B, 263, 114807. https://doi.org/10.1016/j.mseb.2020.114807
Shehu, A., Okunola, O. J., & Uduma, A. U. (2025). Biogenic synthesis, optimization, and characterization of novel silver nanoparticle using combined seed extracts. Scientia Africana, 24(1), Article 19. https://dx.doi.org/10.4314/sa.v24i1.19
Shukri, Z. N. A., Chik, C. E. N. C. E., Hossain, S., Othman, R., Endut, A., Lananan, F., Terkula, I. B., Kamaruzzan, A. S., Rahim, A. I. A., & Draman, A. S. (2022). A novel study on the effectiveness of bioflocculant-producing bacteria Bacillus enclensis, isolated from biofloc-based system as a biodegrader in microplastic pollution. Chemosphere, 308(Pt 2). https://doi.org/10.1016/j.chemosphere.2022.136410
Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núñez, G., Rivero, I. A., Gochi-Ponce, Y., & Flores-López, L. Z. (2017). A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. Journal of Saudi Chemical Society, 21(3), 341-348. https://doi.org/10.1016/j.jscs.2016.10.005
Tavallali, V., Tavallali, H., Mazraeh, A., & Dashti Darvishzadeh, M. (2024). Critical role of neem and jujube extracts in stabilizing copper nanostructures: A comparative study in green synthesis of CuNSs. Current Research in Green and Sustainable Chemistry, 9, 100437. https://doi.org/10.1016/j.crgsc.2024.100437
Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, R. V. (2021). Isolation and optimization of culture conditions of a bioflocculant passivated copper nanoparticles in bioflocculant-producing fungi from Kombucha tea SCOBY. Microbiology Research, 12(4), 950-966. https://doi.org/10.3390/microbiolres12040070
Ullah, N., Ullah, A., & Rasheed, S. (2020). Green synthesis of copper nanoparticles using extract of Dicliptera roxburghiana, their characterization and photocatalytic activity against methylene blue degradation. Letters in Applied NanoBioScience, 9(1), 897-901. https://doi.org/10.33263/LIANBS91.897901
Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aliyu Shehu, Okunola Oluwole Joshua, Uduma A Uduma

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.