Removal of Lead Ions from Water Using Pellet Generated from Bacillus subtilis Isolated from Gold Mining Site in Niger State

Authors

  • Gana, A. J. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria https://orcid.org/0000-0002-0934-3515
  • Tijjani, M. B. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
  • Akinyelure, E. O. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria https://orcid.org/0000-0001-9252-3404

DOI:

https://doi.org/10.47430/ujmr.2161.014

Keywords:

Bacillus subtilis, lead, adsorption, pellet, optimization

Abstract

Abstract

This work concentrated on the isolation of lead tolerant strains of bacteria, identification of the isolated strain with the highest lead tolerance capacity using microgen identification kit. Also,  the efficacy of the generated pellet (dead cell) in the bioremoval of lead from aqueous solutions was determined. A total of nine bacteria were isolated from soil collected from gold mining site in Kontagora metropolis, Niger State. Of the nine isolates, only Bacillus subtilis (KO1) possess high tolerance capacity for high levels of lead ions. The pellet generated from the Bacillus subtilis (KO1) strain was then used to adsorb lead ions from synthetic ion solutions. The isolate's removal efficiency was enhanced by optimizing several physical conditions (pH, temperature, initial lead concentration and contact time). The best optimized adsorption removal efficiency (>90%) was found at pH 3, temperature 40oC with 100 mg/L of initial concentration of lead after 3 hours of treatment. The use of the pellet generated from eco-friendly Bacillus subtilis (KO1) has great potential and additional benefits in terms of lead removal.

Downloads

Download data is not yet available.

References

Abou-Shanab, R. A. I., van Berkum, P. and Angle, J.S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphre of Alyssum murale. Chemosphere 68, 360-367.

https://doi.org/10.1016/j.chemosphere.2006.12.051

Acosta, J. A., Faz, A., Martınez-Martınez S., Zornoza, R., Carmona, D. M. and Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. Journal of Geochemical Exploration, 109(1-3):8-17.

https://doi.org/10.1016/j.gexplo.2011.01.004

Ako, T., Onoduku, U., Oke, S., Adamu, I., Ali, S., Mamodu, A., & Ibrahim, A. (2014). Environmental impact of artisanal gold mining in Luku, Minna, Niger state, North Central Nigeria. Journal of Geosciences and Geomatics, 2(1), 28-37.

Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochem., 40, 997-1026.

https://doi.org/10.1016/j.procbio.2004.04.008

Bergey, D. H. (2004). Bergey's Manual of Determinative Bacteriology. Eds., John G. Holt et al., 9th edn. The Williams and Wilkins, Baltimore. 531-532.

Da Silva, S. B., Cantarelli, V. V., and Ayub, M. A. Z. (2014). "Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment". Bioprocess and biosystems engineering, 37(3), 469- 479.

https://doi.org/10.1007/s00449-013-1016-1

Dai, Q. H., Bian, X. Y., Li, R., Jiang, C. B., Ge, J. M., Li, B. L. and Ou, J. (2019). Biosorption of lead(II) from aqueous solution by lactic acid bacteria. Water Science and Technology, 1-8. doi: 10.2166/wst.2019.082

Dong, J., Yang, Q. W., Sun, L. N., Zeng, Q., Liu, S. J. and Pan, J. (2011). Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China. Environmental Earth Sciences, 64(5):1317-21.

https://doi.org/10.1007/s12665-011-0992-1

Ehsan, S., Ali, S., Noureen, S., Farid, M., Shakoor, M. B. and Aslam, A. (2013). Comparative assessment of different heavy metals in urban soil and vegetables irrigated with sewage/industrial will bete water. Climate tool Es, 35:37-53.

Ellis, R. J., Morgan P., Weightman, A. J. and Fry, J. C. (2003). Cultivation- Dependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil. Applied and Environmental Microbiology, 69: 3223-3230.

https://doi.org/10.1128/AEM.69.6.3223-3230.2003

Facchinelli, A., Sacchi E, Mallen L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution.; 114(3):313. PMID: 11584630.

https://doi.org/10.1016/S0269-7491(00)00243-8

Fiol, N., Villaescusa, I., Martínez, M. and Miralles, N. (2006)Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) fromaqueous solution by olive stone waste. Separation Purified Technology, 50(1): 132-140.

https://doi.org/10.1016/j.seppur.2005.11.016

Giller, K. E., Witter, E., and Mcgrath, S. P. (1998). "Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review". Soil biology and biochemistry, 30(10-11), 1389-1414.

https://doi.org/10.1016/S0038-0717(97)00270-8

Harwood, C. R. (1992). "Bacillus subtilis and its relatives: molecular biological and industrial workhorses". Trends in biotechnology, 10, 247-256.

https://doi.org/10.1016/0167-7799(92)90233-L

Hemambika, B., Rani, M. J. and Kannan, V.R. (2011) Biosorption of heavy metals by immobilized and dead fungal cells: A comparative assessment. J. Ecol. Nat. Environ. 3, 168-175.

Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology, 2018.

https://doi.org/10.1155/2018/2568038

Jaafar, R., Al-Sulami, A., and Al-Taee, A. (2016). Bioaccumulation of cadmium and lead by Shewanella oneidensis isolated from soil in Basra governorate, Iraq. African Journal of Microbiology Research, 10(12), 370-375.

https://doi.org/10.5897/AJMR2016.7912

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., and Beeregowda, K. N. (2014). "Toxicity, mechanism and health effects of some heavy metals". Interdisciplinary toxicology, 7(2), 60-72.

https://doi.org/10.2478/intox-2014-0009

Jiang, J., Pan, C., Xiao, A., Yang, S. and Zhang, G. (2017). Isolation, identification, and environmental adaptability of heavy metal-resistant bacteria from ramie rhizosphere soil around minerefinery. Biotech, 7:5.

Klein R, Tischler J. S., Muhling M. and Schlomann M. (2014). Bioremediation of mine water. Advances in Biochemical Engineering/biotechnology, 141(6):109.

https://doi.org/10.1007/10_2013_265

Li, Z., Ma, Z., Kuijp, T.J.V.D., Yuan, Z. and Huang L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment. 468- 469:843-53.

https://doi.org/10.1016/j.scitotenv.2013.08.090

https://doi.org/10.1016/j.scitotenv.20

08.090 PMID: 2407650

Li, Z., Xu, J., Tang, C., Wu, J., Muhammad, A. and Wang, H. (2006). Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu, Zn, and Cd contaminated paddy soils. Chemosphere, 62: 1374-1380.

https://doi.org/10.1016/j.chemosphere.2005.07.050

Lima, A. T., Mitchell, K., O'Connell, D. W., Verhoeven, J., & Van Cappellen, P. (2016). The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy, 66, 227-233.

https://doi.org/10.1016/j.envsci.2016.07.011

Maghsoodi V, Razavi J, Yaghmaei S (2007). Production of Chitosan by submerged fermentation from Aspergillus niger.Scientia Iranica, Transactions C: Chem. Chem. Eng.16:180-184.

Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in microbiology, 8, 1706.

https://doi.org/10.3389/fmicb.2017.01706

Morais, S., Costa, F. G., and Pereira, M. D. L. (2012). "Heavy metals and human health". Environmental health- emerging issues and practice, 10, 227-246.

https://doi.org/10.5772/29869

Naja, G. M., and Volesky, B. (2009). "Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment". Heavy metals in the environment, 8, 16-18.

Pal, A., Dutta, S., Mukherjee, P. K. and Paul, A. K. (2005). Occurrence of heavy metal resistance in microflora from serpentine soil of Andaman. Journal Basic Microbiology, 45: 207-218.

https://doi.org/10.1002/jobm.200410499

Pal, A., Ghosh, S. and Paul, A. K. (2006).Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology, 97(10): 1253-1258.

https://doi.org/10.1016/j.biortech.2005.01.043

Paul D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2):278- 86.

https://doi.org/10.1016/j.aasci.2017.04.001

Peterson, B. W., Sharma, P. K., van der Mei, H. C., & Busscher, H. J. (2012). Bacterial cell surface damage due to centrifugal compaction. Applied and environmental microbiology, 78(1),120-125.

https://doi.org/10.1128/AEM.06780-11

https://doi.org/10.1128/AEM.06780-11 Piotrowska-Seget, Z., Cycon, M. and Kozdroj, J.

(2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Applied Soil Ecology, 28: 237-246.

https://doi.org/10.1016/j.apsoil.2004.08.001

Rehan, M., & Alsohim, A. S. (2019). Bioremediation of Heavy Metals. In Environmental Chemistry and Recent Pollution Control Approaches (p. 145). IntechOpen.

https://doi.org/10.5772/intechopen.88339

Rodriguez-Tirado, V., Green-Ruiz, C. and Gómez-Gil, B. (2012). Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chem.Eng. J. 181-182, 352-359.

https://doi.org/10.1016/j.cej.2011.11.091

Roy, J. K., Rai, S. K., and Mukherjee, A. K. (2012). "Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a". International journal of biological macromolecules, 50 (1), 219-229.

https://doi.org/10.1016/j.ijbiomac.2011.10.026

Salman, M., Athar, M. and Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Biotechnology, 14(2): 211-228.

https://doi.org/10.1007/s11157-015-9362-x

Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M. B. and Tauqeer,H. M. (2013)."Heavy metals contamination and what are the impacts on living organisms". Greener Journal of Environmental management and public safety, 2(4), 172-179.

https://doi.org/10.15580/GJEMPS.2013.4.060413652

Shivani Gupta, A. Surendran, A. JosephThatheyus (2020) Biosorption of Lead Using the Bacterial Strain, Bacillus subtilis (MTCC 2423) . Journal of Biotechnology and Biomedical Science - 2(3):1-14.

https://doi.org/10.14302/issn.2576-6694.jbbs-20-3419

Stefani, F. O. P., Bell, T. H., Marchand, C., de la Providencia, I. E., Yassimi, E. I., St- Arnaaud, M. and Hijri, M. (2015). Culture-Dependent and Independent methods capture different microbial community fractions in Hydrocarbon- contaminated soils. PLoSONE, 10(6): e0128272.

https://doi.org/10.1371/journal.pone.0128272

Tong, S., Schirnding, Y. E. V. and Prapamontol, T. (2000). "Environmental lead exposure: a public health problem of global dimensions". Bulletin of the world health organization, 78, 1068- 1077.

Wang, F., Yao, J., Si, Y., Chen, H., Russel, M., Chen, K., Qian, Y., Zaray, G. & Bramanti, E. (2010). Short-time effect of heavy metals upon microbial community activity. Journal of Hazardous Materials 173, 510-516.

https://doi.org/10.1016/j.jhazmat.2009.08.114

Willey, J. M., Sherwood, L. M., Woolverton, C.J. (2008). Prescott, Harley and Klein's microbiology. 6th edition, New York: McGraw-Hill Higher Education. ISBN 978-0073302089.

Witek-Krowiak, A (2013). Application of beech sawdust for removal of heavy metals from water: biosorption and desorption studies. Eur. J. Wood Prod,. 71: 227- 236 DOI 10.1007/s00107-013-0673-8

https://doi.org/10.1007/s00107-013-0673-8

Wong P. K., Lam K. C, So, C. M. (1993). Removal and recovery of Cu (II) from industrial effluent by immobilization cells of Pseudomonas putida II-11. Appl.Microbiol. Biotechnol. 39:127-131

https://doi.org/10.1007/BF00166861

Yousaf, A., Athar, M., Salman, M., Farooq, U. and Chawla, F. S. (2017). Biosorption characteristics of Pennisetum glaucum for the removal of Pb(II), Ni(II) and Cd(II) ions from aqueous medium, Green Chemistry Letters and Reviews, 10(4): 462-470, DOI:

https://doi.org/10.1080/17518253.2017.1402093

Downloads

Published

30-06-2021

How to Cite

Gana, A. J., Tijjani, M. B., & Akinyelure, E. O. (2021). Removal of Lead Ions from Water Using Pellet Generated from Bacillus subtilis Isolated from Gold Mining Site in Niger State. UMYU Journal of Microbiology Research (UJMR), 6(1), 105–112. https://doi.org/10.47430/ujmr.2161.014