Molecular Characterisation of Soil-Dwelling Bacillus thuringiensis using Transcriptional Regulator, XRE Gene and the Crystal Protein, cry2 gene

Authors

  • Akinyelure, E. O. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria https://orcid.org/0000-0001-9252-3404
  • Machido, D. A. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
  • Atta, H. I. Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria

DOI:

https://doi.org/10.47430/ujmr.2161.019

Keywords:

Bacillus thuringiensis, transcriptional regulator, XRE, crystal protein, cry2

Abstract

Bacillus thuringiensis (Bt) is the organism that is used most frequently in biological pest management, which is distinguished by the capacity to possess crystalline inclusions throughout the sporulation phase. There is an increasing need to use biological control in controlling plant pathogens due to the inherent advantages. However, the detection of Bt has become more time consuming and cumbersome due to the numerous available crystal genes. The goal of the study was to isolate strains of Bacillus thuringiensis from the soil, characterise the isolates using the transcriptional regulator, XRE gene and the crystal proteins cry2gene and compare the efficiency of these two biomarkers in identifying Bt species. Five different Bacillus thuringiensis strains were isolated from soil samples in Zaria, Nigeria. Polymerase chain reaction was used to detect the existence of the cry2 and XRE genes. Four (80%) of the five isolates harboured the XRE genes, while none (0%) harboured the cry2 genes. This observation is a likely indication that the XRE gene is a reliable biomarker in the identification of Bt isolates from environmental samples. In order to ensure speed and reproducibility in the detection of Bt from environmental samples, molecular techniques targeting the XREgene are recommended.

Downloads

Download data is not yet available.

References

Adeyemo, I. A., Abdul-Wahab, S. O., Obadofin,

A. A. (2018). Biocontrol Potential of Bacillus thuringiensis Isolated from Soil Samples Against Mosquito Larvae. Ife Journal of Science, 20:2

https://doi.org/10.4314/ijs.v20i2.8

Bartoszewicz, M. and Marjanska, P. S. (2017). Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis-like plasmids are genetically and phenotypically diverse. Food Microbiology,64:23-30. doi: 10.1016/j.fm.2017. 05.009

https://doi.org/10.1016/j.fm.2017.05.009

Bello, A. and Hussaini, I. M. (2017).Detection of Multiple Cry Genes in Bacillus thuringiensis Isolated from Different Soil Typesin Zaria. Microbiology Research Journal International, 20(2):1-6.

https://doi.org/10.9734/MRJI/2017/30397

Ben-Dov, S. E., Zaritsky, A., Dahan, E., Barak,

Z. , Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N. and Margalith, Y. (1997). Extended Screening by PCR for Seven Cry group Genes from Field- collected Strains of Bacillus thuringiensis. Applied Environmental Microbiology,63:4883-4890.

https://doi.org/10.1128/aem.63.12.4883-4890.1997

Bergey, D. H. (2004). Bergey's Manual of

Determinative Bacteriology. Eds., John

G. Holt et al., 9th edn. The Williams and Wilkins, Baltimore. 531-532.

Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S.and Koziel, M. G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57:3057-3061.

https://doi.org/10.1128/aem.57.11.3057-3061.1991

Crickmore, N. (2020). Bacillus thuringiensis toxin nomenclature. Retrieved from http://www.lifesci.sussex. ac. uk/ home/Neil_Crickmore/Bt/toxins2 on 11th January, 2021.

Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo,

A. and Dean, D. H. (2011). Bacillus thuringiensis toxin nomenclature. Retrieved from

http://www.lifesci.sussex. ac. uk/ Home/Neil_Crickmore/Bt on 24thNovember, 2020.

Dharmender, K., Kamla, C. and Boora, K. S. (2008). Characterization of native Bacillus thuringensis strains by PCR- RAPD based fingerprinting. Indian Journal of Microbiology,5:124-127.

Eswarapriya, B., Gopalsamy, B., Kameswari, B., Meera, R. and Devi, P. (2010). Insecticidal activity of Bacillus thuringiensis IBT-15 strain against Plutella xylostella. International Journal of PharmTech. Research2:2048- 2053.

Fiuza, L. M. (2015). Thuringiensin: a toxin from Bacillus thuringiensis. Bt Research, 6: 1-12. doi:10.5376/bt.2015.06.0004

https://doi.org/10.1002/9783527678679.dg00850

Frankenhuyzen, K. V. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology,101(1):1-16.

https://doi.org/10.1016/j.jip.2009.02.009

Helgason, E., Økstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I. and Kolstø, A. B. (2000).Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Applied Environmental Microbiology, 66:2627-2630 10.1128/AEM.66.6.2627-2630.2000.

https://doi.org/10.1128/AEM.66.6.2627-2630.2000

Jain, D., Sunda, S. D., Sanadhya, S., Nath, D. J. and Khandelwal, S. K. (2017). Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. Biotechnology, 7:4. doi: 10.1007/s13205-016-0583-7

https://doi.org/10.1007/s13205-016-0583-7

Kaur, S. (2002). Potential for developing novel Bacillus thuringiensis strains and transgenic crops and theirimplications for Indian agriculture. Agricultural Biotech Net,4:1-10.

Liang, H., Liu, Y., Zhu, J., Guan, P., Li, S., Wang, S., et al. (2011). Characterization of cry2-type genes of Bacillus thuringiensis strains from soil- isolated of Sichuan basin. China.Brazilian Journal of Microbiology.42: 140-146. doi: 10.1590/S1517-83822011000100018

https://doi.org/10.1590/S1517-83822011000100018

Liu, Y., Lai, Q., Göker, M., Meier-Kolthoff, J. P., Wang, M., Sun, Y., Wang, L. and Shao, Z. (2015). Genomic insights into the taxonomic status of the Bacillus cereus group. Scientific Reports, 5:14082 10.1038/srep14082.PubMed

https://doi.org/10.1038/srep14082

[PubMed: 26373441]

Lone, S. A, Yadav, R., Malik, A.and Padaria, J.

C. (2016). Molecular and insecticidal characterizati of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: noctuidae). Canadian Journal of Microbiology, 62(2):179-190.

https://doi.org/10.1139/cjm-2015-0328

Lone, S. A., Malik, A. and Padaria, J. C. (2017). Characterization of lepidopteran- specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera. Biotechnology Reports, 15:27-32.

https://doi.org/10.1016/j.btre.2017.05.001

Rasko, D. A., Altherr, M. R., Han, C. S.and Ravel, J. (2005). Genomics of the Bacillus cereus group of organisms. FEMS Microbiology Review,29:303-329. PubMed [PubMed: 15808746]

https://doi.org/10.1016/j.fmrre.2004.12.005

Roh, J. Y., Choi, J. Y., Li, M. S., Jin, B. R. and

Je, Y. H. (2017).Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. International Journal of Microbiology Biotechnology,17:547.

Rolle, R. L., Ejiofor, A. O. and Johnson, T. L. (2005). Determination of the plasmid size and location of d-endotoxin genes of Bacillus thuringiensis by pulse field gel electrophoresis. African Journal of Biotechnology, 4: 580-585. doi: 10.5897/AJB2005.000-3106

https://doi.org/10.5897/AJB2005.000-3106

Schünemann, R., Knaak, N. and Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. International Scholarly Research Notices Microbiology,2:1-12.

https://doi.org/10.1155/2014/135675

Stefani, F. O. P., Bell, T. H., Marchand, C., de la Providencia, I. E., Yassimi, E. I., St- Arnaaud, M. and Hijri, M. (2015). Culture-Dependent and Independent methods capture different microbial community fractions in Hydrocarbon- contaminated soils.

https://doi.org/10.1371/journal.pone.0128272

PLoSONE,10(6):e0128272.

Travers, R. S., Martin, P. A. W. and Reichelderfer, C. F. (1987). Selective process for efficient isolation of soil Bacillus species. Applied Environmental Microbiology,53:1263-1266.

https://doi.org/10.1128/aem.53.6.1263-1266.1987

Vilas-Boas, G. T. and Lemos, M. V. F. (2004). Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Canadian Journal of Microbiology. 50:605-613.

https://doi.org/10.1139/w04-052

Wei, S., Chelliah, R., Park, B. J., Kim, S. H.,

Forghani, F., Cho, M. S., Park, D. S.,

Jin, Y. G. and Oh, D. H. (2019).

Differentiation of Bacillus thuringiensis From Bacillus cereus Group Using a Unique Marker Based on Real-Time PCR. Frontiers in Microbiology,10:883. doi: 10.3389/fmicb.2019.00883

Willey, J. M., Sherwood, L. M. and Woolverton,

C. J. (2008). Prescott, Harley and Klein's microbiology. 6th edition, New York: McGraw-Hill Higher Education. ISBN 978-0073302089.

Downloads

Published

30-06-2021

How to Cite

Akinyelure, E. O., Machido, D. A., & Atta, H. I. (2021). Molecular Characterisation of Soil-Dwelling Bacillus thuringiensis using Transcriptional Regulator, XRE Gene and the Crystal Protein, cry2 gene. UMYU Journal of Microbiology Research (UJMR), 6(1), 153–159. https://doi.org/10.47430/ujmr.2161.019