Effective microbial bioremediation via the multi-omics approach: An overview of trends, problems and prospects
DOI:
https://doi.org/10.47430/ujmr.2161.017Keywords:
Biodegradation, Bioremediation, Genomics, OMICs techniques, Multi-OMICsAbstract
Techno-industrial advancements the world over had led to the generation of hazardous environmental pollutants. Microbial bioremediation offers the best alternative for the removal of these pollutants. The most recent advancements in microbial bioremediation were catalyzed by the advent of various tools that enable the study microbes at levels of sophisticated detail, including genome analysis tools (genomics), protocols for analyzing expressed proteins and enzymes or proteomes (proteomics), techniques of analyzing ribonucleic acids (RNAs) transcriptomes (transcriptomics), and tools for analyzing metabolic end products/metabolomes (metabolomics). The twenty first century is witnessing an outpour of developments in the application of omics approaches in effective microbial bioremediation, thus, this paper attempts to review some of the most significant insights gained from relatively recent studies over a period of two decades (2000-2020) in the applications of multi-OMICS in microbial bioremediation, including trends and cutting-edge researches. We aim to highlight, particularly, the challenges that need to be overcome before OMICs approaches are successfully enshrined in microbial bioremediation, especially in developing countries. The strategies for overcoming such challenges, and the prospects achieved were also outlined. In the coming years, we envision further researches involving the application of multi-OMICs approach in microbial bioremediation potentially revolutionizing this field, opening up research avenues, and leading to improvements in bioremediation of polluted environment.
Downloads
References
Aardema, M. J. & MacGregor, J. T. (2002). Toxicology and genetic toxicology in the new era of toxic genomics: impact of proteomics technologies.Mutation Research, 499, 13-25.
https://doi.org/10.1016/S0027-5107(01)00292-5
Adebusoye, S. A., Ilori, M. O., Amund, O. O., Teniola, O. D. & Olatope, S. O. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World Journal of Microbiology and Biotechnology, 23(8), 1149-1159.
https://doi.org/10.1007/s11274-007-9345-3
Agarry, S. & Latinwo, G.K. (2015). Biodegradation of Diesel Oil in Soil and Its Enhancement by Application of Bioventing and Amendment with Brewery Waste Effluents as Biostimulation-Bioaugmentation Agents. Journal of Ecological Engineering, 16:82-91.
https://doi.org/10.12911/22998993/1861
Ajao, A.T., Yakubu S.E., Umoh V.J. and Ameh J.B. (2014).Enzymatic Studies and Mineralization Potential of Burkholderia cepacia and Corynebacterium kutscheri Isolated from Refinery Sludge.Journal of Microbiology Research, 4:29-42.
https://doi.org/10.4081/xeno.2013.e4
Ali, N., Dashti, N., Khanafer, M., Al-Awdahi, H. & Radwan, S. (2020). Bioremediation of soils saturated with spilled crude oil. Scientific Reports, 10, Article 1116.
https://doi.org/10.1038/s41598-019-57224-x
Bargiela, R., Herbst, F-A., Martinez-Martinez, M., Seifert, J., Rojo, D., Capello, S., Genovese, M., Crisafi, F., Denaro, R., Cherikova, T. N., Barbas, C., von Bergen, M., Yakimov, M. M., Ferrer, M. & Golyshin, P. N. (2015). Metaproteomics and metabolomics analyses of chronically petroleum- polluted sites reveal the importance of general anerobic processes uncoupled with degradation. Proteomics, 15(20), 3508-3520.
https://doi.org/10.1002/pmic.201400614
Basak, B. & Dey, A. (2016). Chapter 9: Bioremediation approaches for recalcitrant pollutants: Potentiality, successes and limitation. In A. Rathoure & V. Dhatwalia (Eds.), Toxicity and waste management using bioremediation (1st ed., pp 178-197). IGI Global.
https://doi.org/10.4018/978-1-4666-9734-8.ch009
Bashir, A., Umar, Z.D., and Steve, J.O. (2014): Comparative analysis of Pneumosiderosis among different metal workers in Malumfashi, Katsina, Nigeria. International Journal of Scientific and Engineering Research, 5(6): 1429-1436.
Birch, H., Hammershoj, R. & Mayer, P. (2018). Determining biodegradation kinetics of hydrocarbons at low concentrations: Covering 5 & 9 orders of magnitude of Kow and Kaw. Environmental Science & Technology, 52(4), 2143-2151.
https://doi.org/10.1021/acs.est.7b05624
Bozinovski, D., Taubert, M., Kleinsteuber, S. & Richnow, H. H. (2014). Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Systematic and Applied Microbiology, 37, 488-501.
https://doi.org/10.1016/j.syapm.2014.07.005
Brainborder.com (2020). Epigenetic, transcriptional, post-transcriptional, translational and post-translational levels.https://brainbrooder.com/lesson /428/16-1-2-section- summary/exercise/2274/epigenetic- transcriptional-post-transcriptional- translational-and-post-translational- levels.
Capelletti, M., Fedi, S., Zampolli, J., Di Canito, A., D'Ursi, P. & Orro, A. (2016). Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcusaetherivorans BCP1 and Rhodococcus opacus R7. Research in Microbiology, 167, 766-773.
https://doi.org/10.1016/j.resmic.2016.06.008
Chakraborty, R., Wu, C. H. & Hazen, T. C. (2012). Systems biology approach to bioremediation. Current Opinion in Biotechnology, 23, 483-490.
https://doi.org/10.1016/j.copbio.2012.01.015
Chen, Y., Vohra, J. & Murell, J. C. (2010). Applications of DNA-Stable isotope probing in bioremediation studies. Methods in Molecular Biology, 599, 129-139.
https://doi.org/10.1007/978-1-60761-439-5_9
Chikere, C. (2013). Application of molecular microbiology techniques in bioremediation of hydrocarbons and other pollutants. British Biotechnology Journal, 3(1), 90-115.
https://doi.org/10.9734/BBJ/2013/2389
Cho, J.C. & Tiedje, J.M. (2002). Quantitative detection of microbial genes by using DNA microarrays. Applied Environmental Microbiology, 68, 1425-1430.
https://doi.org/10.1128/AEM.68.3.1425-1430.2002
Colin, P. Y., Kintses, B., Geilen, F., Miton, C. M., Fischer, G. & Mohamed, M. F. (2015). Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nature Communications, 6, Article 10008.
https://doi.org/10.1038/ncomms10008
Das, N. &Chandran, P. (2010). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, Article 941810.
https://doi.org/10.4061/2011/941810
Denaro, R., D'Aria, G., Di marco, G. & Genovese, M. (2005). Assessing terminal restriction fragment length polymorphism sustainability for the description of bacterial community structure and dynamics in hydrocarbon- polluted marine environments. Environmental Microbiology, 7, 78-87.
https://doi.org/10.1111/j.1462-2920.2004.00685.x
Dennis, P., Edwards, E. A. & Liss, S. N. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays.Applied Environmental Microbiology, 69, 769-778.
https://doi.org/10.1128/AEM.69.2.769-778.2003
Desai,C., Pathak, H.&Madamwar, D. (2009). Advances in molecular and "-Omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresource Technology, 101(6), 1558-1569.
https://doi.org/10.1016/j.biortech.2009.10.080
Dharmadi, Y. & Gonzalez, R. (2004). DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnology Progress, 20, 1309-1324.
https://doi.org/10.1021/bp0400240
Diaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7, 173-180.
Dini-Andreote, F., Andreote, F. D., Ara-ujo, W. L., Trevors, J. T. & Elsas, J. D. (2012). Bacterial genomes: habitat specificity and uncharted organisms. Microbial Ecology, 64, 1-7.
https://doi.org/10.1007/s00248-012-0017-y
Dubinsky, E.A., Conrad, M. E., Chakraborty, R., Bill, M., Borglin, S. E., Hollibaugh, J. T., Mason, O. U., Piceno, M. Y., Reid,F. C., Stringfellow, W. T., Tom, L. M., Hazen, T. C. & Andersen, G. L. (2013). Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Science and Technology, 47, 10860-10867.
https://doi.org/10.1021/es401676y
El-Amrani, A., Dumas A-S., Wick, L. Y., Yergeau, E. & Berthome, A. (2015). Omics insights into PAH degradation toward improved green remediation biotechnologies.Environmental Science and Technology, 49(19), 11281-11291.
https://doi.org/10.1021/acs.est.5b01740
Esteve-Nunez, A., Caballero, A. & Ramos, J. L. (2001). Biological degradation of 2,4,6- trinitrotoluene. Microbiology and Molecular Biology Reviews, 65, 335-52.
https://doi.org/10.1128/MMBR.65.3.335-352.2001
Gaby, J. C., Rishishwar, L., Valderrama- Aguirre, L. C., Green, S. J., Valderrama-Aguirre, A., Jordan, I. K. & Kostka, J. E. (2018). Diazotroph community characterization via a highthroughput nifH amplicon sequencing and analysis pipeline. Applied Environmental Microbiology, 84, Article e01512-17.
https://doi.org/10.1128/AEM.01512-17
Gieg, L. M. & Toth, C. R. A. (2017). Signature metabolite analysis to determine in-situ anaerobic hydrocarbon biodegradation. In M. Boll (Ed.), Anaerobic utilization of hydrocarbons, oils and lipids (1st ed., pp. 1-30).Springer.
https://doi.org/10.1007/978-3-319-33598-8_19-1
Greene, E. A. & Voordouw, G. (2003). Analysis of environmental microbial communities by reverse sample genome probing. Journal of Microbiology Methods, 53, 211-9.
https://doi.org/10.1016/S0167-7012(03)00024-1
Gu, Q., Wu, Q., Zhang, J., Guo, W., Ding, Y., Wang, J., Wu, H., Sun, M., Hou, L.,Wei, X. & Zhang, Y. (2018). Isolation and transcriptome analysis of phenol- degrading bacterium carbon sand filters in full-scale drinking water treatment plant. Frontiers in Microbiology, 9, Article 2162.
https://doi.org/10.3389/fmicb.2018.02162
Gutierrez, T., Morris, G., Ellis, G., Bowler, B., Jones, M., Salek, K., Mulloy, B & Teske, A. (2018). Hydrocarbon-degradation an MOS-formation capabilities of the dominant bacteria enriched in sea surface oil slicks during the Deepwater Horizon oil spill. Marine Pollution Bulletin, 135, 2015-215
https://doi.org/10.1016/j.marpolbul.2018.07.027
Gutierrez, T., Singleton, D. R., Berry, D., Yang, T., Aitken, M. D. & Teske, A. (2013). Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA- SIP. ISME Journal, 7, 2091-2104.
https://doi.org/10.1038/ismej.2013.98
Gutleben, J., De Mares, M. C., van Elsas, J. D., Smidt, H., Overmann, J. & Sipkema, D. (2018). The multi-omics promise in context: from sequence to microbial isolate. Critical Reviews in Microbiology, 44(2), 212-229.
https://doi.org/10.1080/1040841X.2017.1332003
Hadadi, N., Pandey, V., Chiappino-Pepe, A., Morales, M., Gallart-Ayala, H., Mehl, F.,Ivanisevic, J.,Sentchilo, V.&van der Meer, J. R. (2020). Mechanistic insights into bacterial metabolic reprogramming from OMICs-integrated genome-scale models.npj Systems Biology andApplications, 6(1), 1-11.
https://doi.org/10.1038/s41540-019-0121-4
Hammershoj, R., Birch, H., Redman, A. D. & Mayer, P. (2019). Mixture effects on biodegradation kinetics of hydrocarbons in surface water: Increasing concentrations inhibited degradation whereas multiple substrates did not. Environmental Science & Technology, 53(6), 3087-3094.
https://doi.org/10.1021/acs.est.9b00638
Haroon, M. F., Hu, S., Shi, Y., Imerlfort, M., Keller, J. & Hugenholtz, P. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in novel archaeal lineage. Nature, 500, 567-570. Hatzenpichler, R., Connon, S. A., Goudeau, D., Malmstrom, R. R., Woyke, T. & Orphan,
https://doi.org/10.1038/nature12619
https://doi.org/10.1038/nature12375
V. J. (2016). Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia.Proceedings of the National Academy of Sciences of the USA, 113, Article E4069-E4078.
https://doi.org/10.1073/pnas.1603757113
Hazrati, H., Shayegan, J. & Sayedi, S. M. (2015). Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture. Journal of Environmental Health Science Engineering, 13, Article 72.
https://doi.org/10.1186/s40201-015-0230-y
He, P., Liu, J., Bai, Y. & Fang, X. (2016). Diversity and distribution of catechol 2,3-dioxygenase genes in surface sediments of the Bohai Sea. FEMS Microbiology Letters, 263(10), Article fnw086.
https://doi.org/10.1093/femsle/fnw086
Henckel, T., Jackel, U., Schnell, S. & Conrad, R. (2000). Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Applied Environmental Microbiology, 66,1801-1808.
https://doi.org/10.1128/AEM.66.5.1801-1808.2000
Holtorf, H., Guitton, M-C & Reski R. (2002). Plant functional genomics. The Science of Nature, 89(6), 235-249.
https://doi.org/10.1007/s00114-002-0321-3
Huettel, M., Overholt, W. A., Kostka, J. E., Hagan, C., Kaba, J., Wells, W.B. & Dudley, S. (2018). Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Marine Pollution Bulletin, 126, 488-500.
https://doi.org/10.1016/j.marpolbul.2017.10.061
Igeno, M. I., Macias, D. & Blasco, R. (2019). Case of adaptive laboratory evolution (ALE): Biodegradation of furfural by Pseudomonaspseudoalcaligenes CECT 5344. Genes, 10, 449.
https://doi.org/10.3390/genes10070499
Imperato, V., Portillo-Estrada, M., McAmmond,
B. M., Douwen, Y., Van Hamme, J. D. & Gawronski, S. W. (2019). Genomic diversity of two hydrocarbon-degrading and plant growth-promoting pseudomonas species isolated from the oil field of Bobrka (Poland). Genes, 10(6), Article 443.
https://doi.org/10.3390/genes10060443
Jiang, B., Jin, N., Xing, Y., Su, Y. & Zhang, D. (2018). Unravelling uncultivable pesticide degraders via stable isotope probing (SIP). Critical Reviews in Biotechnology, 38(7), 1-24.
https://doi.org/10.1080/07388551.2018.1427697
Joo, W. A. and Kim, C. W. (2005). Proteomics of halophilic archaea. Journal of Chromatography B: Analytical Technologies in Biomedical and Life Sciences,815, 237-250.
https://doi.org/10.1016/j.jchromb.2004.10.041
Joye, S. & Kostka, J. (2020) Microbial Genomics of the Global Ocean System. American Society for Microbiology. https://www.ncbi.nlm.nih.gov/books/ NBK556286/
https://doi.org/10.1002/essoar.10502548.1
Karthika, R., Gopinath, L. R., Archaya, S. & Bhuvaneswan, R. (2014). Isolation of diesel degrading bacteria, identification of catechol gene and its biogas production. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 76-82.
https://doi.org/10.9790/2402-081017682
Karthikeyan, S., Rodriguez-R, L. M., Heritier- Robbins, P., Kim, M., Overholt, W. A.,
Gaby, J. C., Hatt, J. K., Spain, J. C., Rosselló-Móra, R., Huettel, M., Kostka, J. E. & Konstantinidis, K. T. (2019). "CandidatusMacondimonasdiazotrophic a", a novel gammaproteobacterial genus dominating crude-oil- contaminated coastal sediments.ISME Journal, 13, 2129-2134.
https://doi.org/10.1038/s41396-019-0400-5
Kaster, A-K. & Sobol, M. S. (2020). Microbial single-cell omics: the crux of the matter. Applied Microbiology & Biotechnology, 104, 8209-8220.
https://doi.org/10.1007/s00253-020-10844-0
Khan, A. A., Wang, R. F. & Cao, W. W. (2001).
Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied Environmental Microbiology, 67, 3577-85.
https://doi.org/10.1128/AEM.67.8.3577-3585.2001
Kim, S. II, Kim, S. J. & Nam, M. H. (2002).
Proteome analysis of aniline-induced proteins in Acinetobacterlwoffi K24. Current Microbiology, 44,61-6.
https://doi.org/10.1007/s00284-001-0075-8
Knigge, T., Monsinjon, T. & Andersen, O. K. (2004). Surface-enhanced laser desorption/ionization-time of flight- mass spectrometry approach to biomarker discovery in blue mussels (Mytilusedulis) exposed to polyaromatic hydrocarbons and heavy metals under field conditions. Proteomics, 4, 2722-2727.
https://doi.org/10.1002/pmic.200300828
Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B. & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidising marine archaeon. Nature, 7058, 543-546.
https://doi.org/10.1038/nature03911
Krivobok, S., Kuony, S. & Meyer, C. (2003). Identification of pyrene-induced proteins in Mycobacterium spp. strain 6PY1: evidence for two ring- hydroxylating dioxygenases. Journal of Bacteriology, 185, 3828-3841.
https://doi.org/10.1128/JB.185.13.3828-3841.2003
Kuhner, S., Wohlbrand, L. and Fritz, I. (2005). Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. Journal of Bacteriology, 187, 1493-1503.
https://doi.org/10.1128/JB.187.4.1493-1503.2005
Kumari, P. & Kumar, Y. (2021). Chapter 19 - Bioinformatics and computational tools in bioremediation and biodegradation of environmental pollutants. In V. Kumar, G. Sxena & M. P. Shah (Eds). Bioremediation for environmental sustainability, 421-444.
https://doi.org/10.1016/B978-0-12-820318-7.00019-8
Ladezma-Villaneuva, A., Adame-Rodriguez, J.
M. & Arechiga-carvajal, E. T. (2018). Transcriptomics as a first choice gate for fungal biodegradation process description. In R. Prasad & E. Arande (Eds.), Approaches in bioremediation. Nanotechnology in the life sciences. Springer Cham.
Lederberg, J. & McCray, A. T. (2001). Commentary: 'Ome Sweet 'Omics - A Genealogical Treasury of Words. The Scientist, 15(7), 8.
Lemos, E. G. D. M., Alves, L. M. C. & Campanharo, J. C. (2003). Genomics based design of defined growth media for the plant pathogen Xylellafastidiosa. FEMS Microbiology Letters, 219, 39-45.
https://doi.org/10.1016/S0378-1097(02)01189-8
Lilis, L., Clipson, N. & Doyle, E. (2010). Quantification of catechol deoxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS Microbiology Ecology, 73(363), 9.
https://doi.org/10.1111/j.1574-6941.2010.00906.x
Lim, N. Y. N., Roco, C. A. & Frostegard, A. (2016). Transparent DNA-RNA co- extraction workflow protocol suitable for inhibitor-rich environmental samples that focuses on complete DNA removal for transcriptomic analyses. Frontiers in Microbiology, 7, 1588.
https://doi.org/10.3389/fmicb.2016.01588
Liu, Z. & Liu, J. (2013). Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen, 2, 492-504.
https://doi.org/10.1002/mbo3.117
https://doi.org/10.1002/mbo3.89
Lovely D. R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews Microbiology, 1, 35-44.
https://doi.org/10.1038/nrmicro731
Ma, J. & Zhai, G. (2012). Microbial bioremediation in Omics era: opportunitiesand challenges. Journal of Bioremediation and Biodegradation, 3, Article e120.
https://doi.org/10.4172/2155-6199.1000e120
https://doi.org/10.4172/2155-6199.1000e125
Marchesi, J. R. & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3, 31.
https://doi.org/10.1186/s40168-015-0094-5
Mason, O. U., Hazen, T. C., Borglin, S., Chain,P. S., Dubinsky, E. A., Fortney, J. L., Han, J., Holman, H. Y., Hultman, J., Lamendella, R., Mackelprang, R., Malfatti, S., Tom, L. M., Tringe, S. G., Woyke, T., Zhou, J., Rubin, E. M. & Jansson, J. K. (2012). Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME Journal, 6, 1715- 1727.
https://doi.org/10.1038/ismej.2012.59
McDonald, I. R., Miguez, C. B., Rogge, G., Bourque, D., Wendlandt, K. D., Groleau, D. & Murrel, J. (2006). Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiology Letters, 255(2), 1722-1732.
https://doi.org/10.1111/j.1574-6968.2005.00090.x
McLean, T. I. (2013). "Eco-omics": A review of the application of genomics, transcriptomics and proteomics for thestudy of the ecology of harmful algae.Microbial Ecology, 65, 901-915.
https://doi.org/10.1007/s00248-013-0220-5
Musa, S.I. (2019). Isolation and identification of diesel oil-degrading bacteria in used engine oil contaminated soil. Journal of Applied Science and Environmental Management, 23, 431-435.
https://doi.org/10.4314/jasem.v23i3.10
Namasivayam, E.(2013). Proteomics: techniques, applications and challenges. In: D. Barh, Y. Zambare and
https://doi.org/10.1201/b14289-3
V. Azevedo (Eds.). OMICS. Applications in biomedical, agricultural and environmental sciences.(1st ed., pp. 3- 42). CRC Press/Taylor and Francis.
Nikhil, T., Deepa, V., Rohan, G. and Satish, B. (2013). Isolation, characterization and identification of bacteria from garage soil and comparison of their bioremediation potential. International Research Journal of Environment Sciences, 2, 48-50.
O'Connell, M. J., McNally, A. & McInerney, J. O. (2017). Why prokaryotes have pangenomes. Nature Microbiology, 2(4), Article 17040.
https://doi.org/10.1038/nmicrobiol.2017.40
Overmann, J.(2010). Novel cultivation strategies for environmentally important microorganisms. In: L. L. Barton, M. Mandle&A. Loy, (Eds). Geomicrobiology: molecular and environmental perspective (1st ed., pp. 69-89). Springer.
https://doi.org/10.1007/978-90-481-9204-5_3
Overmann, J., Abt, B. & Sikorski, J. (2017). Present and future of culturing bacteria. Annual Review of Microbiology, 71, 71-730.
https://doi.org/10.1146/annurev-micro-090816-093449
Oyewusi, H. A., Abdul Wahab, R. & Huyop, F. (2021). Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Molecular Biology Reports, 48, 2687-2701.
https://doi.org/10.1007/s11033-021-06239-7
Pan. Y., Kong, K. F. & Tsang, J. S. (2015). Complete genome sequence and characterisation of the haloacid- degrading Burkholderia caribensis MBA4. Standards in Genomic Sciences, 10(1), Article 114.
https://doi.org/10.1186/s40793-015-0109-7
Paoletti, A. C., Zybailov, B. and Washburn, M. P.(2004). Principles and applications of multidimensional protein identification technology. Expert Reviews inProteomics, 1, 275-282.
https://doi.org/10.1586/14789450.1.3.275
Plewniak, F., Crognale, S., Rosetti, S. & Berin,P. N. (2018). A genomic outlook on bioremediation: The case of arsenic removal. Frontiers in Microbiology, 9, Article 820.
https://doi.org/10.3389/fmicb.2018.00820
Qiao, J., Zhang, C., Luo, S. & Chen, W. (2013). Bioremediation of highly contaminated oil field soil: Bioaugmentation for enhancing aromatic compounds removal. Frontiers in Environmental Science and Engineering, 8, 296-304.
https://doi.org/10.1007/s11783-013-0561-9
Rathoure, A. & V. Dhatwalia (Eds.), Toxicity and waste management using bioremediation (1st ed.). IGI Global.
Rehman, Z.U., Khan, K., Faisal, S., Kamal, R.,
Ahmad, S., Irfan, M.K.H., Safa, I. U. & Kumar, T. (2015). Isolation and identification of diesel degrading bacteria from oil contaminated soil in Mansehra, Pakistan. International Journal of Scientific and Engineering Research, 6, 1438-1661.
Rodriguez-R., L., Overholt, W., Hagan, C., Huettel, M., Kostka, J. E.& Konstantinidis, K. T.(2015). Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISMEJournal, 9, 1928-1940.
https://doi.org/10.1038/ismej.2015.5
Roling, W. F., Ferrer, M. & Golyshin, P. N. (2010). Systems approach to microbial communities and their functioning. Current Opinion in Biotechnology, 21, 532-538.
https://doi.org/10.1016/j.copbio.2010.06.007
Salvador, M., Abdulmutallib, U., Gonzalez, J., Kim, J., Smith, A. A., Faulon J-P., Wei, R., Zimmerman, W. & Jiminez, J-I. (2019). Microbial genes for a circular and sustainable bio-PET economy. Genes, 10, Article 373.
https://doi.org/10.3390/genes10050373
Santero, E. & Diaz, E. (2020). Special issue: Genetics of biodegradation and bioremediation. Genes, 11(4), Article 441.
https://doi.org/10.3390/genes11040441
Santos, P. M., Benndorf, D.& Sa-Correia, I. (2004). Insights into Pseudomonasputida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics, 4, 2640-52.
https://doi.org/10.1002/pmic.200300793
Schao, H., Chen, M. & Fei, X. (2019). Complete genome sequence and characterisation of a polyethylene biodegradation strain, Streptomycesalbogriseolus LBX-2. Microorganisms, 7, 10, 379. Schleper, C., Jurgens, G. & Jonuscheit, M.(2005). Genomic studies of uncultivated archaea. Nature Reviews Microbiology, 3, 479-488.
https://doi.org/10.1038/nrmicro1159
Seifert, J., Herbst, F. A., Halkjaer-Nielsen, P. & Planes, J. F. (2013). Progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics, 13, 2786-2804.
https://doi.org/10.1002/pmic.201200566
Seshadri, R., Adrian, L. & Fouts, D.E. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoidesethenogenes.Science,3 07, 105-108.
https://doi.org/10.1126/science.1102226
Shiller, A. M., Chan, E. W., Joung, D. J., Redmond, M. C. & Kessler, J. D. (2017). Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. ScientificReports,7(1), 1-9.
https://doi.org/10.1038/s41598-017-11060-z
Shin, B., Kim, M., Zengler, K., Chin, K. J., Overholt, W. A., Gieg, L. M.&Konstantinidis, K. T. (2019). Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment.ScientificReports,9, Article 1239.
https://doi.org/10.1038/s41598-018-36567-x
Singh, C. & Lin, J. (2008). Isolation and characterization of diesel oil degrading indigenous microorganismsin Kwazulu- Natal,SouthAfrica. African Journal of Biotechnology,7, 1927-1932.
https://doi.org/10.5897/AJB07.728
Singh, J. S. & Singh, D. P. (2017). Methanotrophs: An emerging bioremediation tool with unique broad spectrum methane monooxygenase (MMO) enzyme. In J. Singh & G. Seneviratne (Eds.). Agro-Environmental Sustainability (1st Ed., pp 1-18). Springer Cham.
https://doi.org/10.1007/978-3-319-49724-2
https://doi.org/10.1007/978-3-319-49727-3
https://doi.org/10.1007/978-3-319-49727-3_1
Singh, O. V. & Nagaraj, N. S. (2015). Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Briefings in Functional Genomics and Proteomics, 4(4), 355-362.
https://doi.org/10.1093/bfgp/eli006
Thulasi, K., Jayakumar, A., Balakrishna-Pillai, A., Gopalakrishnapallai- Sankaramangalam, V. K. & Kumarapillai, H. (2018). Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem. Archives of Microbiology, 200(5), 829-853.
https://doi.org/10.1007/s00203-018-1509-z
Tyson, G. W., Lo, I., Baker, B. J., Allen, E. E., Hugenhotz, P. & Banfield, J. F. (2005). Genome-directed isolation of the key nitrogen fixer
Leptosprillumferrodiazotrophum sp. Nov. from an acidophilic microbial community. Applied Environmental Microbiology, 71, 6319-6324.
Ullrich, S. R., Poehlein, A., Tieschler, J. S., Gonzalez, C., Ossandon, F. J. & Daniel,R. (2016). Genome analysis of the biotechnologically relevant acidophilic iron oxidising strain JA12 indicates phylogenetic and metabolic diversitywithin the novel genus "Ferrovum".PLoS One, 11(1), Article e0146832.
https://doi.org/10.1371/journal.pone.0146832
Umar, Z.D., Aminu, M., Yahaya, Y.R. (2020a). Survival response of Consortium isolates from diesel contaminated soil within Katsina State, Nigeria. International Journal of Environment. 9: 51-66.
https://doi.org/10.3126/ije.v9i2.32516
Umar, Z. D., Aminu, M. & Yahaya, Y.R. (2020b). Optimization of Diesel biodegrading conditions using Response Surface Methodology based on Central Composite Design. Polycyclic Aromatic Compounds,40, 1-11.
Umar, Z.D., Mansir, A.Z., & Riko, Y.Y. (2019). Compatibility and formulation of diesel degrading consortia using bacteria isolated from contaminated soil. Bayero Journal of Pure and Applied Sciences, 12(1), 199-208.
https://doi.org/10.4314/bajopas.v12i1.32S
Umar, Z.D., Aziz, N.A.A., Zulkifli, S .Z. and Mustafa, M.(2018a). Efficiency of polycyclic aromatic hydrocarbons (PAHs) degrading consortium in resisting heavy metals during PAHs degradation. International Journal of Environment, 7(1), 14-27.
https://doi.org/10.3126/ije.v7i1.21291
Umar, Z.D., Azwady, A.A.N, Zulkifli, S. Z. & Muskhazli, M.(2018b). Effective Phenanthrene and Pyrene biodegradation using Enterobacter sp. MM087 (KT933254) isolated from used engine oil contaminated soil. Egyptian Journal of Petroleum,27(3), 349-359.
https://doi.org/10.1016/j.ejpe.2017.06.001
Umar, Z.D., Abd. Aziz, N.A., Zulkifli, S.Z. and Mustafa, M. (2017). Rapid Biodegradation of Polycyclic Aromatic Hydrocarbons Using Effective Cronobacter sakazakii MM045 (KT933253), MethodsX, 4, 104-117.
https://doi.org/10.1016/j.mex.2017.02.003
Umar, Z.D. (2017). Biodegradation of Phenanthrene and Pyrene using Bacteria isolated from used vehicle lubricant-contaminated soil. Doctoral Thesis (PhD). Published by Universiti Putra Malaysia Institutional repository (UPMIR). Pages 1-172.http://psasir.upm.edu.my/id/eprint/7 1027/
Umar, Z.D., Aziz, N.A.A., Zulkefli, S.Z. and Muskhazli, M. (2016). Identification of phenanthrene and pyrene degrading bacteria from used engine oil contaminated soil. International Journal of Scientific and Engineering Research, 7, 680-686.
Umar, Z.D., and Bashir, A. (2014): Assessment of potential health impacts on surface water sources in Northern Nigeria. International Journal of Environment,3(2), 152-163.doi: 10.3126/ije.v3i2.10523
https://doi.org/10.3126/ije.v3i2.10523
Vakhlu, J. & Gupta, P.(2013). Metagonomics: techniques, applications and challenges. In B. D. Barh, Y. Zambare, Y. &V. Azevedo (Eds.). OMICS. Applications in Biomedical, Agricultural and Environmental Sciences.(1st ed., pp 569- 596). CRC Press/Taylor and Francis.
Vonk, S. M., Hollander, D. J.&Murk, A. J. (2015). Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Marine Pollution Bulletin, 100, 512.
https://doi.org/10.1016/j.marpolbul.2015.08.023
Wang, J., Suzuki, T., Dohra, H., Mori, T., Kawagishi, H. & Hirai, H. (2020). Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaetae sordida YK-624 on native lignin. ResearchSquare. https://www.researchsquare.com/article.rs-11087/v1
https://doi.org/10.21203/rs.2.20480/v1
Wang, R. F., Wennerstrom, D. & Cao, W. W. (2000). Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydrocarbon- degrading bacterium Mycobacterium sp. strain PYR-1. Applied Environmental Microbiology, 66, 4300-4304.
https://doi.org/10.1128/AEM.66.10.4300-4304.2000
Wasinger, V. C., Cordwell, S. J. & Cerpa- Poljak, A. (1995). Progress with gene- product mapping of the Mollicutes: Mycoplasmagenitalium. Electrophoresis, 16, 1090-1094.
https://doi.org/10.1002/elps.11501601185
Weiman, S., Joye, S. B., Kostka, J. E., Halanych, K. M. & Colwell, R. R. (2021). GoMRI insights into microbial genomics and hydrocarbon bioremediation response in marine ecosystems. Chromatography, 34(1), 124-135.
https://doi.org/10.5670/oceanog.2021.121
Wilkins, J.C., Homer, K. A. & Beighton, D. (2001). Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Applied Environmental Microbiology, 67, 3396-3405.
https://doi.org/10.1128/AEM.67.8.3396-3405.2001
Wood, T. K.(2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19, 572-578.
https://doi.org/10.1016/j.copbio.2008.10.003
Woyke, T., Doud, D. F. R. & Schultz, F. (2017). The trajectory of microbial single-cell sequencing. Nature Methods, 14, 1045-
https://doi.org/10.1038/nmeth.4469
Wright, C. L., Schatterman, A., Crombie, A. T., Murelli, J. C. & Lehtovirta-Morley, L. E.(2020). Inhibition of ammonia monooxygenase from ammonia-oxidising archaea by linear and aromatic alkynes. Applied and Environmental Microbiology, 86(9), Article e02388-19.
https://doi.org/10.1128/AEM.02388-19
Xiang, W., Wei, X., Tang, H., Li, L. & Huang, R. (2020). Complete genome sequence and biodegradation characteristics of benzoic- acid degrading bacterium Pseudomonas sp. SCB32. Biomed Research International, 2020, Article 6146104.
https://doi.org/10.1155/2020/6146104
Xu, Y. & Zhao, F. (2018). Single-cell metagonomics: Challenges and applications. Protein Cell 9, 501-510.
https://doi.org/10.1007/s13238-018-0544-5
Ye, R. W., Tao, W. & Bedzyk, L. (2000). Global gene expression profiles of Bacillussubtilis grown under anaerobic conditions. Journal of Bacteriology, 182, 4458-4465.
https://doi.org/10.1128/JB.182.16.4458-4465.2000
Yetti, E., Wijaya, H., Thontowi, A. &Yopi, A. (2016).Isolation of oil degrading bacteria from the terrestrial sitesof Minas, Riau and the prescreening of the isolates on thesimple polycyclic aromatic hydrocarbon. Proceedings of the 6th International Symposium for Sustainable Humanosphere, 237-243.
Yoneda, A., Henson, W. R., Goldner, N. K.,
Park, K. J., Fosberg, K. J. & Kim, S. J. (2016). Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcusopacus PD630. Nucleic Acids Research, 44, 2240-2254.
https://doi.org/10.1093/nar/gkw055
Zampoli, J., Di Canito, A., Manconi, A., Milanesi, L., Di Gennaro, P. & Orro, A. (2020). Transcriptomic analysis of Rhodococcus opacusR7 grown on o-xylene by RNA-seq. Frontiers in Microbiology, 11, Article 1808.
https://doi.org/10.3389/fmicb.2020.01808
Zhao, B. & Poh, C. L. (2008). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics, 8(4), 874-881.
https://doi.org/10.1002/pmic.200701005
Zhou, J. & Fields, M. (2006). Application of OMICs to Field Bioremediation: Current Status, Challenges and Future.https://doesbr.org/PImeetings/A pril06/presentationts/Tuesday_ERSP/Sum mary_Zhou_Fields.pdf
Ziervogel,K., McKay, L., Rhodes, B., Osburn, C. L., Dickson-Brown, J., Arnosti, C.& Teske, A. (2012). Microbial activities and dissolved organic matter dynamics in oil- contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS One, 7, Article e34816.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Journal of Microbiology Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.