Review on Microbial Degradation of Aromatic Hydrocarbons: Focus on Kinetics Modelling

Authors

DOI:

https://doi.org/10.47430/ujmr.2162.011

Keywords:

Environment,, Pollutants,, Microorganisms,, Remediation,, Modeling

Abstract

Many anthropogenic activities produce huge quantities of chemical pollutants that find their ways into the natural environment. Those chemicals can either be of organic or inorganic sources, depending on their originating compounds. Over the years, there had been research findings regarding the application of microorganisms to provide solutions in the environment. This becomes imperative as salient issues in researches on microbial bioremediation will be understood. This review focused more on Kinetics modeling during biodegradation of aromatic hydrocarbons and their nature and effect on the environment coupled with the conventional remediation techniques. Kinetics modeling during bioremediation predicts microbial activities through their mechanism of actions towards the targeted contaminants. This gives better understanding of the rate of chemical degradation through different variable parameters. Modeling the cultivation of degrading organisms can highlight the inhibitory properties of the cells involved. Therefore, specific microbial growth rates can be modeled at various initial concentrations of the involving substrates. Such could be achieved using secondary models of Monod, Teissier, Aiba, Haldane, Yano and Luong. The models can reveal the substrate inhibitory effects to the reduction rate (as in the case of Monod) or inhibitory to the substrate rates like in the other models. Many studies were recently conducted on modeling microbial growth. Hence, utilization of those models are the best evidence that indicate when the substrates are toxic or inhibitory to the microbes. This provides better understanding on the future researches regarding the bioremediation effectiveness on scientific arguments.

Downloads

Download data is not yet available.

References

Agarry, S., Audu, T., Solomon, B. (2009). Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. International Journal of Environmental Science and Technology:(IJEST), 6, 443.

https://doi.org/10.1007/BF03326083

Ahmad, S.A., Ahamad, K.N.E.K., Johari, W.L.W., Halmi, M.I.E., Shukor, M.Y., Yusof, M.T. (2014). Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei 25, 505-512.

https://doi.org/10.1007/s12210-014-0344-7

AbdEl-Mongy, M.A., Shukor, M.S., Hussein S, Ling A.P.K., Shamaan N.A, Shukor. M.Y. (2015) Isolation and characterization of a molybdenum-reducing, phenol- and catechol-degrading Pseudomonas putida strain amr-12 in soils from Egypt. Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 16, 353-369.

Al-Darbi MM, Saeed NO, Islam MR, Lee K (2005) Biodegradation of natural oils in seawater. Energy Sources27, 19-34. doi:10.1080/00908310490448073.

https://doi.org/10.1080/00908310490448073

Akintunde, W. O., Olugbenga, O. A., and Olufemi, O. O. (2015). Some Adverse Effects of Used Engine Oil (Common Waste Pollutant) On Reproduction of Male Sprague Dawley Rats. Open access Macedonian Journal of Medical Sciences, 3(1), 46.

https://doi.org/10.3889/oamjms.2015.035

Ahn, Y., Sanseverino, J., and Sayler, G.S. (1999). Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation10(2), 49-157.

https://doi.org/10.1023/A:1008369905161

Arulazhagan, P., and Vasudevan N. (2011). Biodegradation of PAHs by halotolerant bacterial strain Ochrobactrumsp. VA1. Marine Pollution Bulletin, 62(2), 388-394.

https://doi.org/10.1016/j.marpolbul.2010.09.020

Abdulsalam, S., and Omale, A.B. (2009). Comparison of biostimulation and bioaugmentation techniques for the remediation of used motor oil contaminated soil. Brazilian Archives of Biology and Technology 52(3), 747-754.

https://doi.org/10.1590/S1516-89132009000300027

Babák L, Šupinová P, Burdychová R (2012) Growth models of Thermus aquaticus and Thermus scotoductus. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 60, 19-26. doi:10.11118/actaun201260050019.

https://doi.org/10.11118/actaun201260050019

Baranyi, J., Roberts, T.A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294.

https://doi.org/10.1016/0168-1605(94)90157-0

Baranyi J (1995) Mathematics of predictive food microbiology. International Journal of Food Microbiology26, 199-218. doi:10.1016/0168-1605(94)00121-L.

https://doi.org/10.1016/0168-1605(94)00121-L

Bashir, A., Umar, Z.D., and Steve, J.O. (2014): Comparative analysis of Pneumosiderosis among different metal workers in Malumfashi, Katsina, Nigeria. International Journal of Scientific and Engineering Research, 5(6): 1429-1436.

Buchanan RL (1993) Predictive food microbiology. Trends in Food Science and Technology. 4, 6-11.

https://doi.org/10.1016/S0924-2244(05)80004-4

Borden, R.C., Bedient, P.B., Lee, M.D., Ward, C.H., and Wilson, J.T. (1986). Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation: Field application. Water Resources Research, 22(13), 1983-1990.

https://doi.org/10.1029/WR022i013p01983

https://doi.org/10.1029/WR022i013p01973

Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46, 205-209.

https://doi.org/10.1016/j.bej.2009.05.021

Birgül, A., Tasdemir, Y., and Cindoruk, S.S. (2011). Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons determined using a modified sampler. Atmospheric Research, 101(1), 341-353.

https://doi.org/10.1016/j.atmosres.2011.03.012

Bossert I., and Bartha, R. (1984). The Fate of Petroleum in Soil Ecosystem: In Atlas, R.M. (Ed.) Petroleum Microbiology. Macmillan Publishing Company, USA, 435-473.

Baboshin, M., Akimov, V., Baskunov, B., Born, T.L., Khan, S.U., and Golovleva, L. (2008). Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 19(4), 567-576.

https://doi.org/10.1007/s10532-007-9162-2

Brandt, H.C.A., and Watson, W.P. (2003). Monitoring human occupational and environmental exposures to PAHs. The Annals of Occupational Hygiene, 47(5), 349-378.

Bispo, A., Jourdain, M.J., and Jauzein, M. (1999). Toxicity and genotoxicity of industrial soils polluted by PAHs. Organic Geochemistry, 30(8), 947-952.

https://doi.org/10.1016/S0146-6380(99)00078-9

Chizhova, T., Hayakawa, K., Tishchenko, P., Nakase, H., and Koudryashova, Y. (2013). Distribution of polycyclic aromatic hydrocarbons in northwestern part of Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 86, 19-24.

https://doi.org/10.1016/j.dsr2.2012.07.042

Cao, L., Shen, G., and Lu, Y. (2008). Combined effects of heavy metal and PAHs on soil microorganism communities. Environmental Geology, 54(7), 1531-1536.

https://doi.org/10.1007/s00254-007-0934-0

Choi, N.-C., Choi, J.-W., Kim, S.-B., & Kim, D.-J. (2008). Modeling of growth kinetics for Pseudomonas putida during toluene degradation. Applied microbiology and biotechnology, 81, 135-141.

https://doi.org/10.1007/s00253-008-1650-8

Campo, P., Zhao, Y., Suidan, M.T., Venosa, A.D., Sorial, G.A. (2007). Biodegradation kinetics and toxicity of vegetable oil triacylglycerols under aerobic conditions. Chemosphere, 68, 2054-2062.

https://doi.org/10.1016/j.chemosphere.2007.02.024

Connell, D.W. (2005). Basic Concepts of Environmental Chemistry. CRC Press, 33487-2742.

https://doi.org/10.1201/b12378

Chung, M.K., Hu, R., Cheung, K.C., and Wong, M.H. (2007). Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 67(3), 464-473.

https://doi.org/10.1016/j.chemosphere.2006.09.062

Cussler, E. L. (1997). Diffusion: Mass Transfer in Fluid Systems. 2nd edition. New York, USA: Cambridge University Press, pp. 308-330.

Czelej, K., Cwieka, K. and Kurzydlowski, K.J. (2016). CO2 stability on the Ni low-index surfaces: Vander Waals corrected DFT analysis. Catalysis Communications, 80(5): 33-38

https://doi.org/10.1016/j.catcom.2016.03.017

Desai A., and Vyas, P. (2006). Petroleum and Hydrocarbons Microbiology: Applied Microbiology. Report from the Department of Microbiology, MS University of Baroda, Vadodara India, 1-22.

Declercq, I., Cappuyns, V., and Duclos, Y. (2012). Monitored natural attenuation of contaminated soils: state of the art in Europe-a critical evaluation. Science of the Total Environment, 426, 393-405.

https://doi.org/10.1016/j.scitotenv.2012.03.040

Environmental Protection Agency of the United States, EPA (2015). Health Effects of Ozone Pollution. Available at https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution, accessed 19th January, 2020.

Ferrari, L., Kaufmann, J., Winnefeld, F. and Plank, J. (2010). Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. Journal of Colloid Interface Sciences, 347(1): 15-24.

https://doi.org/10.1016/j.jcis.2010.03.005

Fujikawa H (2010) Development of a new logistic model for microbial growth in foods. Biocontrol Science15, 75-80. doi:10.4265/bio.15.75.

https://doi.org/10.4265/bio.15.75

Gopinath, K. P., Kathiravan, M. N., Srinivasan, R., & Sankaranarayanan, S. (2011). Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresource technology, 102, 3687-3693.

https://doi.org/10.1016/j.biortech.2010.11.072

Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., and Kell, D.B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245-252.

https://doi.org/10.1016/j.tibtech.2004.03.007

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies.

Haji, S., Benstaali, B., Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H 2 O 2 advanced oxidation process. Chemical Engineering Journal.

https://doi.org/10.1016/j.cej.2010.12.050

Harayama, S., and Rekik, M. (1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. Journal of Biological Chemistry, 264(26), 15328-15333.

https://doi.org/10.1016/S0021-9258(19)84830-5

Hirose, J., Kimura, N., Suyama, A., Kobayashi, A., Hayashida, S., and Furukawa, K. (1994). Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin. FEMS Microbiology Letters, 118(3), 273-277.

https://doi.org/10.1111/j.1574-6968.1994.tb06840.x

Horvath, M., Bilitzky, L. and Huttner, J. (1985). Ozone. London, UK: Elsevier Science, pp. 259, 269-270.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY (2014) Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology 2, 1-6.

https://doi.org/10.54987/ajpb.v2i1.81

Huang, L. (2013) Optimization of a new mathematical model for bacterial growth. Food Control32, 283-288. doi:10.1016/j.foodcont.2012.11.019.

https://doi.org/10.1016/j.foodcont.2012.11.019

International Union of Pure and Applied Chemistry (IUPAC) (1990). Glossary of Atmospheric Chemistry Terms (Recommendations 1990), Pure and Applied Chemistry, 62: 2167.

https://doi.org/10.1351/pac199062112167

Ibarrolaza, A., Coppotelli, B.M., Del Panno, M.T., Donati, E.R., and Morelli, I.S. (2009). Dynamics of microbial community during bioremediation of phenanthrene and chromium (VI) contaminated soil microcosms. Biodegradation, 20(1), 95-107.

https://doi.org/10.1007/s10532-008-9203-5

International Agency for Research on Cancer, IARC (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and related exposures. IARC Monographs on the Evolution of Carcinogenic Risks to Humans, 92, 1-853.

Johnsen, A., and Karlson, U. (2005). PAH degradation capacity of soil microbial communities: Does it depend on PAH exposure? Microbial Ecology, 50(4), 488-495.

https://doi.org/10.1007/s00248-005-0022-5

Johnsen AR, Binning PJ, Aamand J, Badawi N, Rosenbom AE (2013). The Gompertz function can coherently describe microbial mineralization of growth-sustaining pesticides. Environmental Science and Technology47.

https://doi.org/10.1021/es400861v

Knowles, G., Downing, A. L., & Barrett, M. (1965). Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Microbiology, 38, 263-278.

https://doi.org/10.1099/00221287-38-2-263

Kornegay, B. H., Andrews, J. F. (1968). Kinetics of fixed-film biological reactors. Journal (Water Pollution Control Federation), R460-R468.

Karamalidis, A.K., Evangelou, A.C., Karabika, E., Koukkou, A.I., Drains, C., andVoudrias, E.A. (2010). Laboratory scale bioremediation of petroleum contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosastrain Spet. Bioresource Technology, 101(16), 6545-6552.

https://doi.org/10.1016/j.biortech.2010.03.055

Keshavarzifard, M., and Zakaria, M.P. (2015). Polycyclic aromatic hydrocarbons contamination of surface sediments from Port Dickson, Malaysia: Distribution, sources and ecological risk assessment. Environmental Forensics, 16(4), 322-332.

https://doi.org/10.1080/15275922.2015.1059392

Khanna, S., Lal, B., Chandra, R., Rajam, S., and Bajpai, U. (1998).Enzymes and bioremediation. In Enzyme Chemistry: Impact and applications. Suckling, C.J., Gibson, C.L., and Pitt, A.K., Eds., Blackie Academic and Professional, Chapman and Hall, London, 240.

Kitano, H. (2002). Systems biology; a brief overview. Science, 295(5560), 1662-1664.

https://doi.org/10.1126/science.1069492

Kim, T.J., Lee, E.Y., Kim, Y.J., Cho, K.S., and Ryu, H.W. (2003). Degradation of polyaromatic hydrocarbons by Burkholderiacepacia 2A-12. World Journal of Microbiology and Biotechnology, 19(4), 411-417.

https://doi.org/10.1023/A:1023998719787

https://doi.org/10.1023/A:1023969629568

Kim, D.-J., Choi, J.-W., Choi, N.-C., Mahendran, B., & Lee, C.-E. (2005). Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Applied microbiology and biotechnology, 69, 456-462.

https://doi.org/10.1007/s00253-005-1997-z

Kimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M., and Yano, K. (1989). Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. Journal of Bacteriology, 171(5), 2740-2747.

https://doi.org/10.1128/jb.171.5.2740-2747.1989

Kulkarni, M., Chaudhari, A. (2006). Biodegradation of p-nitrophenol by P. putida. Bioresource technology, 97, 982-988.

https://doi.org/10.1016/j.biortech.2005.04.036

Loginova, E., Bartelt, N., Feibelman, P., & McCarty, K. (2009). Factors influencing graphene growth on metal surfaces. New Journal of Physics, 11, 063046.

https://doi.org/10.1088/1367-2630/11/6/063046

Lu, J., Guo, C., Zhang, M., Lu, G., and Dang, Z. (2014). Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14. International Biodeterioration and Biodegradation, 87, 75-80.

https://doi.org/10.1016/j.ibiod.2013.11.004

Lundstedt, S., White, P.A., Lemieux, C.L., Lynes, K.D., Lambert, I.B., Öberg, L., and Tysklind, M. (2007). Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons at PAH-contaminated sites. AMBIO: A Journal of the Human Environment, 36(6), 475-485.

https://doi.org/10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2

Maliszewska-K.B., and Smreczak, B. (2003). Habitat functions of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 28(8), 719-728.

https://doi.org/10.1016/S0160-4120(02)00117-4

Maliszewska, K.B. (1999). Sources, concentration, fate and effects of polycyclic aromatic hydrocarbons in the environment. Part A: PAHs in Air, Polish Journal of Environmental Studies, 8, 131-136.

Misenheimer, T.J., Anderson, R.F., Lagoda, A.A., Tyler, D.D. (1965). Production of 2-Ketogluconic Acid by Serratiamarcescens. Applied Microbiology.

https://doi.org/10.1128/am.13.3.393-396.1965

Mishra, V., Lal, R., and Srinivasan. (2001). Enzymes and operons mediating xenobiotic degradation in bacteria. Critical Reviews in Microbiology, 27(2), 133-166.

https://doi.org/10.1080/20014091096729

Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology.

https://doi.org/10.1146/annurev.mi.03.100149.002103

MohdRadzi, N.A.S., Abu Bakar, N.K., Emenike, C.U., and Abas, M.R. (2016). Polycyclic aromatic hydrocarbons: contamination level and risk assessment in urban areas, Kuala Lumpur, Malaysia. Desalination and Water Treatment, 57(1), 171-190.

https://doi.org/10.1080/19443994.2015.1021103

Moraes, B., Eduardo, T., and Sania, T.M (2009). Biodegradation of oil refinery residues using mixed-culture of microorganisms isolated from land farming. Brazilian Archives of Biology and Technology, 52(6), 1571-1578.

https://doi.org/10.1590/S1516-89132009000600029

Madigan, M.T., J.M. Martinko and J. Parker (1998).Brock: Biología de los Microorganismos. Prentice Hall, España, 726.

Mulchandani, A., Luong, J. (1989). Microbial inhibition kinetics revisited. Enzyme and microbial technology, 11, 66-73.

https://doi.org/10.1016/0141-0229(89)90062-8

Mercurio, P., Burns, K. A., & Negri, A. (2004). Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes. Environmental pollution, 129, 165-173.

https://doi.org/10.1016/j.envpol.2003.11.001

https://doi.org/10.1016/j.envpol.2003.11.002

https://doi.org/10.1016/j.envpol.2003.11.008

Nweke, C.N., Nwabanne, J.T., Igbokwe, P.K. (2014) Kinetics of batch anaerobic digestion of vegetable oil wastewater. Open Journal of Water Pollution and Treatment.

https://doi.org/10.15764/WPT.2014.02001

Nkeiruka, N.C., Tagbo NJ (2014) Continuous process design model simulation for the anaerobic digestion of vegetable oil wastewater. American Journal of Environmental Protection. 3, 209. doi:10.11648/j.ajep.20140305.11.

https://doi.org/10.11648/j.ajep.20140305.11

Nicholson, J.K., Holmes, E., Lindon, J.C., and Wilson, I.D. (2004). The challenges of modeling mammalian biocomplexity. Nature Biotechnology, 22, 1268-1274.

https://doi.org/10.1038/nbt1015

Nakai, C., Horiike, K., Kuramitsu, S., Kagamiyama, H., and Nozaki, M. (1990). Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. Journal of Biological Chemistry, 265(2), 660-665.

https://doi.org/10.1016/S0021-9258(19)40100-2

Oa, S. W., and Lee, T. G. (2009). Investigation of soil pollution status for railroad depot. Railway Bulletin, 12(5), 788-792.

Okpokwasili, G., Nweke, C. (2006). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305-317.

Park, S.W., Lee, J.Y., Kim, K.J., Yang, J.S., and Baek, K. (2010). Alkaline enhanced separation of waste lubricant oils from railway contaminated soil. Separation Science and Technology, 45(12-13), 1988-1993.

https://doi.org/10.1080/01496395.2010.493838

Patri, M., Padmini, A., and Babu, P. P. (2010): Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Annals of Neuroscienc-es, 16(1), 22-30.

https://doi.org/10.5214/ans.0972.7531.2009.160109

Poggi-Varaldo, H., Rodriguez-Vazquez, R., Fernandez-Villagomez, G., & Esparza-Garcia, F. (1997). Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Applied microbiology and biotechnology.

https://doi.org/10.1007/s002530050928

Pereira, P.A.D.P., Lopes, W.A., Carvalho, L.S., da Rocha, G.O., de Carvalho Bahia, N., Loyola, J., and de Andrade, J.B. (2007). Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmospheric Environment, 41(36), 7837-7850.

https://doi.org/10.1016/j.atmosenv.2007.06.013

Quintas, M. A., Brandao, T. R., & Silva, C. L. (2007). Modelling colour changes during the caramelisation reaction. Journal of food engineering, 83, 483-491.

https://doi.org/10.1016/j.jfoodeng.2007.03.036

Raghuvanshi, S., Gupta, S., Babu, B.V. (2012). Application of biofilter system for removal of ethyl acetate: Column and kinetic studies

Rubio-Clemente, A., Torres-Palma, R.A., and Peñuela, G.A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Science of the Total Environment, 478, 201-225.

https://doi.org/10.1016/j.scitotenv.2013.12.126

Ravindra, K., Sokhi, R., and Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.

https://doi.org/10.1016/j.atmosenv.2007.12.010

Richards, F.J. (1959). A flexible growths function for empirical use. Journal of Experimental Botany10, 290-300.

https://doi.org/10.1093/jxb/10.2.290

Salam, D. A., Suidan, M. T., & Venosa, A. D. (2012). Effect of butylated hydroxytoluene (BHT) on the aerobic biodegradation of a model vegetable oil in aquatic media. Environmental science & technology, 46, 6798-6805.

https://doi.org/10.1021/es2046712

Sany, S.B.T., Hashim, R., Salleh, A., Rezayi, M., Mehdinia, A., and Safari, O. (2014). Polycyclic aromatic hydrocarbons in coastal sediment of Klang Strait, Malaysia: distribution pattern, risk assessment and sources. PloS one, 9, e94907.

https://doi.org/10.1371/journal.pone.0094907

Saifuddin N, Chua KH (2006) Biodegradation of lipid-rich wastewater by combination of microwave irradiation and lipase immobilized on chitosan. Biotechnology.

Spinelli, L., and Freitas, D.E. (2005).Bioremediation, Toxicity and Cell Damage in gasoline spills (Ph.D Thesis); Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Seo, J.S. (2006). Bacterial Proteomes and Metabolism of Aromatic Compounds. Ph.D. dissertation, University of Hawaii Manoa, USA.

Seo, J.S., Keum, Y.S., and Li, Q.X. (2009). Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health, 6(1), 278-309.

https://doi.org/10.3390/ijerph6010278

Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource technology, 99, 205-209.

https://doi.org/10.1016/j.biortech.2006.11.045

Sandrin, T.R., and Maier, R.M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111(8), 1093.

https://doi.org/10.1289/ehp.5840

Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169-195.

https://doi.org/10.1007/s10311-007-0095-0

Sabullah, M. K., Rahman, M., Ahmad, S., Sulaiman, M., Shukor, M., Shamaan, N. A., & Shukor, M. (2016). Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca Saw-5 in soils from Sarawak. Agrivita, 38, 1.

https://doi.org/10.17503/agrivita.v38i1.654

Schröder, M., Müller, C., Posten, C., Deckwer, W. D., & Hecht, V. (1997). Inhibition kinetics of phenol degradation from unstable steady‐state data. Biotechnology and bioengineering, 54, 567-576.

https://doi.org/10.1002/(SICI)1097-0290(19970620)54:6<567::AID-BIT7>3.0.CO;2-H

Şeker, Ş., Beyenal, H., Salih, B., & Tanyolac, A. (1997). Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Applied microbiology and biotechnology, 47, 610-614.

https://doi.org/10.1007/s002530050982

Stingley, R.L., Khan, A.A., and Cerniglia, C.E. (2004). Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochemical and Biophysical Research Communications, 322(1), 133-146.

https://doi.org/10.1016/j.bbrc.2004.07.089

Tavassoli, T., Mousavi, S., Shojaosadati, S., & Salehizadeh, H. (2012). Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel, 93.

https://doi.org/10.1016/j.fuel.2011.10.021

Tao, X.Q., Lu, G.N., Dang, Z., Yang, C., and Yi, X.Y. (2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 42(3), 401-408.

https://doi.org/10.1016/j.procbio.2006.09.018

Thyrhaug, E., Zidek, K., Dostal, J., Bina, D. and Zigmantas, D. (2016). Exciton Structure and Energy Transfer in the Fenna-Matthews- Olson Complex. Journal Physical Chemistry Letters, 7(9): 1653-1660.

https://doi.org/10.1021/acs.jpclett.6b00534

Tseng, M. M.C., Wayman, M. (1975). Kinetics of yeast growth: inhibition-threshold substrate concentrations. Canadian journal of microbiology.

https://doi.org/10.1139/m75-147

Umar, Z.D., and Bashir, A. (2014): Assessment of potential health impacts on surface water sources in Northern Nigeria. International Journal of Environment, 3(2), 152-163. doi: 10.3126/ije.v3i2.10523

https://doi.org/10.3126/ije.v3i2.10523

Umar, Z.D., Aziz, N.A.A., Zulkefli, S.Z. and Muskhazli, M., (2016). Identification of phenanthrene and pyrene degrading bacteria from used engine oil contaminated soil. International Journal of Scientific and Engineering Research, 7, 680-686.

Umar, Z.D. (2017). Biodegradation of Phenanthrene and Pyrene using Bacteria isolated from used vehicle lubricant-contaminated soil. Doctoral Thesis (PhD). Published by Universiti Putra Malaysia Institutional repository (UPMIR). Pages 1-172. http://psasir.upm.edu.my/id/eprint/71027/

Umar, Z.D., Aziz, N.A.A., Zulkifli, S.Z. and Muskhazli, M., (2017). Rapid biodegradation of PAHs using effective C. sakazakiiMM045 (KT933253). MethodsX, 4, 104-117.

https://doi.org/10.1016/j.mex.2017.02.003

Umar, Z.D., Aziz, N.A.A., Zulkifli, S.Z. and Mustafa, M., (2018a). Efficiency of polycyclic aromatic hydrocarbons (PAHs) degrading consortium in resisting heavy metals during PAHs degradation. International Journal of Environment, 7(1): 14-27.

https://doi.org/10.3126/ije.v7i1.21291

Umar, Z.D., Azwady, A.A.N, Zulkifli, S.Z., Muskhazli, M., (2018b). Effective Phenanthrene and Pyrene biodegradation using Enterobactersp. MM087 (KT933254) isolated from used engine oil contaminated soil. Egyptian Journal of Petroleum 27(3), 349-359.

https://doi.org/10.1016/j.ejpe.2017.06.001

Umar, Z.D., Mansir, A.Z., &Riko, Y.Y., (2019). Compatibility and formulation of diesel degrading consortia using bacteria isolated from contaminated soil. Bayero Journal of Pure and Applied Sciences, 12(1), 199-208.

https://doi.org/10.4314/bajopas.v12i1.32S

Umar, Z.D., Aminu, M., Yahaya, Y.R. (2020a). Survival response of Consortium isolates from diesel contaminated soil within Katsina State, Nigeria. International Journal of Environment. IJE-20-24 (Article in press).

Umar, Z.D., Aminu, M., Yahaya, Y.R. (2020b). Optimization of Diesel biodegrading conditions using Response Surface Methodology based on Central Composite Design. Polycyclic Aromatic Compounds. doi: 10.1080/10406638.2020.1823859.

https://doi.org/10.1080/10406638.2020.1823859

Van Hamme, J.D., Singh, A., and Ward, O.P. (2003). Recent Advances in Petroleum Microbiology, Microbiology and Molecular Biology Review, 67(4), 649.

https://doi.org/10.1128/MMBR.67.4.503-549.2003

Vela, N., Martínez-Menchón, M., Navarro, G., Pérez-Lucas, G., and Navarro, S. (2012). Removal of polycyclic aromatic hydrocarbons from groundwater by heterogeneous photocatalysis under natural sunlight. Journal of Photochemistryand Photobiology A: Chemistry, 232, 32-40.

https://doi.org/10.1016/j.jphotochem.2012.02.003

Wang, J., & Wan, W. (2008). The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China Series B: Chemistry.

https://doi.org/10.1007/s11426-008-0104-6

Wong, F., Harnerb, T., Liua, Q.T., and Diamonda, M.L. (2004). Using experimental and forest soils to investigate the uptake of PAHs along urban-rural gradient. Environmental Pollution, 129(3), 387-398.

https://doi.org/10.1016/j.envpol.2003.12.006

Yunusa, Y.R. and Umar, Z.D. (2021). Effective Microbial Bioremediation via the multi-omics Approach: An Overview of Trends, Problems and Prospects. UMYU Journal of Microbiology Research, 6(1), 127-145. doi: https://doi.org/10.47430/ujmr.2161.022

https://doi.org/10.47430/ujmr.2161.017

Zhang, W.X., Bouwer, E.J., and Ball, W.P. (1998). Bioavailability of hydrophobic organic contaminants: Effects and implications of sorption‐related mass transfer on bioremediation. Groundwater Monitoring and Remediation, 18(1), 126-138.

https://doi.org/10.1111/j.1745-6592.1998.tb00609.x

Zhang, Z., Rengel, Z., Meney, K., Pantelic, L., and Tomanovic, R. (2011). Polynuclear aromatic hydrocarbons mediate cadmium toxicity to an emergent wetland species. Journal of Hazardous Materials, 189(1), 119-126.

https://doi.org/10.1016/j.jhazmat.2011.02.007

Zwietering MH, Jongenburger I, Rombouts FM, Van'tRiet K (1990) Modeling of the bacterial growth curve. Applied and Environmental Microbiology.

https://doi.org/10.1128/aem.56.6.1875-1881.1990

Downloads

Published

30-12-2021

How to Cite

Umar, Z.D., & Yunusa, Y.R. (2021). Review on Microbial Degradation of Aromatic Hydrocarbons: Focus on Kinetics Modelling. UMYU Journal of Microbiology Research (UJMR), 6(2), 74–86. https://doi.org/10.47430/ujmr.2162.011