Antibiotic susceptibility profile of Escherichia coli isolated from poultry settings
DOI:
https://doi.org/10.47430/ujmr.25103.002Keywords:
Antibiotic Resistance, Escherichia coli, Organic Poultry, Structure-Activity RelationshipAbstract
Study’s Excerpt:
- E. coli from Site A showed high resistance to trimethoprim-SMX, streptomycin, and sparfloxacin.
- Soils with conventional manure (Site A) had the lowest antibiotic susceptibility overall.
- Two-way ANOVA showed site and antibiotic type significantly influenced resistance patterns.
- Control soils (Site C) consistently showed higher antibiotic inhibition zones than amended soils.
- Findings highlight the AMR risks from poor poultry manure management in agricultural soils.
Full Abstract:
Poultry production contributes significantly to environmental antibiotic resistance, particularly through manure-amended soils. This study evaluated the antibiotic susceptibility of Escherichia coli isolated from soils amended with conventional poultry manure (Site A), local poultry droppings (Site B), and unamended control soils (Site C). Isolates were confirmed via Gram staining and biochemical tests, and then subjected to disc diffusion testing using ten antibiotics, as per the CLSI 2024 guidelines. E. coli from Site A exhibited significantly reduced susceptibility to trimethoprim-sulfamethoxazole (11.5 ± 1.50 mm), streptomycin (14.1 ± 3.08 mm), and sparfloxacin (16.1 ± 2.85 mm) compared to Site C (p < 0.05). Site C consistently showed higher inhibition zones across most antibiotics, indicating lower resistance to these antibiotics. While Site B isolates showed intermediate resistance, differences from Site C were not statistically significant. Two-way ANOVA confirmed significant effects of both antibiotic type (p = 0.0003) and sample site (p < 0.0001) on resistance patterns. These findings underscore the role of poultry farming practices, particularly conventional systems, in promoting soil-based antimicrobial resistance, warranting stricter regulation and improved manure management.
Downloads
References
Abubakar, U. U., Muhtar, U. N., & Haruna, S. (2023). Bacteriocins of Escherichia coli: A mini review. Dutse Journal of Pure and Applied Sciences, 9(3b), 129-135. https://doi.org/10.4314/dujopas.v9i3b.14
Ainyakou-Sanga, M. A., Goualie, B. G., Kipre, R. C., Kra, D. K., & Karou, G. T. (2025). Risks associated with the discharge of poultry slaughterhouse waste in public landfill sites in Abidjan, Côte d'Ivoire. The Journal of Infection in Developing Countries, 19(2), 280-288. https://doi.org/10.3855/jidc.20125
Begum, A., Shilpi, R. Y., & Haque, A. (2020). Isolation and identification of salt tolerant bacteria available in different depths of soil in Sundarbans mangrove forest, Bangladesh. International Journal of Advanced Research in Biological Sciences, 7(5), 40-56.
Beshiru, A., Isokpehi, N. A., Igbinosa, I. H., Akinnibosun, O., Ogofure, A. G., & Igbinosa, E. O. (2024). Extended-spectrum beta-lactamase (ESBL)-and non-ESBL producing Escherichia coli surveillance in surface water sources in Edo State, Nigeria: A public health concern. Scientific Reports, 14(1), 21658. https://doi.org/10.1038/s41598-024-72993-w
Caioni, G., Benedetti, E., Perugini, M., Amorena, M., & Merola, C. (2023). Personal care products as a contributing factor to antimicrobial resistance: Current state and novel approach to investigation. Antibiotics, 12(4), 724. https://doi.org/10.3390/antibiotics12040724
Cheesbrough, M. (2006). District laboratory practice in tropical countries (2nd ed., Part 2). Cambridge University Press. https://doi.org/10.1017/CBO9780511543470
Clinical and Laboratory Standards Institute. (2024). Performance standards for antimicrobial susceptibility testing (34th ed.; CLSI document M100).
Emmanuel-Akerele, H., & Adamolekun, P. (2021). Microbiological assessment of poultry droppings, water and soil under deep litter (DL) and battery cage (BL) systems within Lagos, Nigeria. Malaysian Journal of Applied Sciences, 6(1), 80-98. https://doi.org/10.37231/myjas.2021.6.1.279
Food and Agriculture Organization of the United Nations. (2017). The future of food and agriculture: Trends and challenges.
Fashola, M. O., Anagun, O. S., Adebiyi, K. O., & Edu, M. O. (2024). Co-occurrence of heavy metal and antibiotics resistance traits in bacteria isolated from poultry droppings and soil in Badagry, Lagos. Pan African Journal of Life Sciences, 8(1), 122-130. http://www.pajols.org/journal_articles/vol_8/issue_1/paper_9.pdf
Fatoba, D. O., Amoako, D. G., Abia, A. L. K., & Essack, S. Y. (2022). Transmission of antibiotic-resistant Escherichia coli from chicken litter to agricultural soil. Frontiers in Environmental Science, 9, 751732. https://doi.org/10.3389/fenvs.2021.751732
Furlan, J. P. R., & Stehling, E. G. (2021). Multiple sequence types, virulence determinants and antimicrobial resistance genes in multidrug-and colistin-resistant Escherichia coli from agricultural and non-agricultural soils. Environmental Pollution, 288, 117804. https://doi.org/10.1016/j.envpol.2021.117804
Igbinosa, E. O., Beshiru, A., Igbinosa, I. H., Cho, G. S., & Franz, C. M. (2023). Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS ONE, 18(3), e0282835. https://doi.org/10.1371/journal.pone.0282835
Kaviani, R. A., Astaykina, A., Streletskii, R., Afsharyzad, Y., Etesami, H., Zarei, M., & Balasundram, S. K. (2023). An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. International Journal of Environmental Research and Public Health, 19(8), 4666. https://doi.org/10.3390/ijerph19084666
Khamari, A., Rath, R., Mishra, A. K., & Bhoi, S. K. (2021). A complete analysis of physiochemical properties, microbial diversity of soil along with economically important plant found in a tropical dry deciduous forest Debdarha, Bargarh, Odisha. International Journal for Research in Applied Sciences and Biotechnology, 8(5), 180-182. https://doi.org/10.31033/ijrasb.8.5.26
Maikasuwa, M. A., & Jabo, M. S. M. (2011). Profitability of backyard poultry farming in Sokoto metropolis, Sokoto State, North-West, Nigeria. Nigerian Journal of Basic and Applied Sciences, 19(1). https://doi.org/10.4314/njbas.v19i1.69354
Manaia, C. M., Aga, D. S., Cytryn, E., Gaze, W. H., Graham, D. W., Guo, J., ... & Zhang, T. (2024). The complex interplay between antibiotic resistance and pharmaceutical and personal care products in the environment. Environmental Toxicology and Chemistry, 43(3), 637-652. https://doi.org/10.1002/etc.5555
Męcik, M., Buta-Hubeny, M., Paukszto, Ł., Maździarz, M., Wolak, I., Harnisz, M., & Korzeniewska, E. (2023). Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. Journal of Environmental Management, 348, 119303. https://doi.org/10.1016/j.jenvman.2023.119303
Meng, M., Li, Y., & Yao, H. (2022). Plasmid-mediated transfer of antibiotic resistance genes in soil. Antibiotics, 11(4), 525. https://doi.org/10.3390/antibiotics11040525
Merchant, L. E., Rempel, H., Forge, T., Kannangara, T., Bittman, S., Delaquis, P., ... & Diarra, M. S. (2012). Characterization of antibiotic-resistant and potentially pathogenic Escherichia coli from soil fertilized with litter of broiler chickens fed antimicrobial-supplemented diets. Canadian Journal of Microbiology, 58(9), 1084-1098. https://doi.org/10.1139/w2012-082
Muhammad, A., Ali, S., & Khan, R. (2024). Biofilm formation and horizontal gene transfer: Implications for antibiotic resistance in soil bacteria. Journal of Applied Microbiology, 137(2), 257-269.
Muhtar, U. N., Shiaka, P. G., & Gumel, A. M. (2022). Molecular identification of Escherichia coli O157: H7 isolated from biomedical waste in General Hospital Dutse, Jigawa State, Nigeria. Dutse Journal of Pure and Applied Sciences, 8(4b), 23-32. https://doi.org/10.4314/dujopas.v8i4b.4
Ngene, A. C., Ohaegbu, C. G., Awom, I. E., Egbere, J. O., Onyimba, I. A., Coulthard, O. D., ... & Aguiyi, J. C. (2021). High prevalence of multidrug resistant enterobacteriaceae isolated from wastewater and soil in Jos Metropolis, Plateau State, Nigeria. African Journal of Bacteriology Research, 13(2), 22-29.
Prayekti, E., & Sumarsono, T. (2021). Variations in the incubation time of the Staphylococcus aureus, Bacillus sp and Escherichia coli cultures on the results of the gram stain visualization. IOP Conference Series: Earth and Environmental Science, 819(1), 012075. https://doi.org/10.1088/1755-1315/819/1/012075
Rutala, W. A., Weber, D. J., Barbee, S. L., Gergen, M. F., Sobsey, M. D., Samsa, G. P., & Sickbert-Bennett, E. E. (2023). Evaluation of antibiotic-resistant bacteria in home kitchens and bathrooms: Is there a link between home disinfectant use and antibiotic resistance? American Journal of Infection Control, 51(11), A158-A163. https://doi.org/10.1016/j.ajic.2023.04.005
Scaccia, N., Vaz-Moreira, I., & Manaia, C. M. (2021). The risk of transmitting antibiotic resistance through endophytic bacteria. Trends in Plant Science, 26(12), 1213-1226. https://doi.org/10.1016/j.tplants.2021.09.001
Tian, M., He, X., Feng, Y., Wang, W., Chen, H., Gong, M., Liu, D., Clarke, J. L., & van Eerde, A. (2021). Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics, 10(5), 539. https://doi.org/10.3390/antibiotics10050539
United States Department of Agriculture. (2020). Animal welfare in poultry production.
Wang, B., Xu, J., Wang, Y., Stirling, E., Zhao, K., Lu, C., ... & Ma, B. (2023). Tackling soil ARG-carrying pathogens with global-scale metagenomics. Advanced Science, 10(26), 2301980. https://doi.org/10.1002/advs.202301980
Xu, H., Chen, Z., Wu, X., Zhao, L., Wang, N., Mao, D., & Luo, Y. (2021). Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Science of the Total Environment, 758, 143693. https://doi.org/10.1016/j.scitotenv.2020.143693
Zhang, Y., Cheng, D., Xie, J., Zhang, Y., Wan, Y., Zhang, Y., & Shi, X. (2022). Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. Chemosphere, 300, 134529. https://doi.org/10.1016/j.chemosphere.2022.134529
Zhang, Y., Liu, F., & Zhao, Q. (2024). Transfer of antibiotic resistance from agricultural soils to human pathogens. Science of the Total Environment, 831, 154-162.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Umar Nasir Muhtar, Yusuf Musa Ibrahim, Fatima Auwal Abdullahi, Salim Faruk Bashir, Tsoho Rabiu Nura, Abdulaziz Dantata

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.