Determination of fecal carriage rate of Fluoroquinolone Resistant E. coli in Hospital and community Settings of Damaturu, Yobe State, Nigeria
DOI:
https://doi.org/10.47430/ujmr.25103.012Keywords:
E. coli, fecal carriage, Antibiotic resistance, Enterobacteriaceae, FluoroquinoloneAbstract
Study’s Excerpt:
- Fecal carriage of CIP-resistant coli was 41.5% in Damaturu.
- Higher prevalence seen in hospitalized patients (60%).
- Resistance significantly associated with gender and prior antibiotic use.
- Phenotypic and disc diffusion tests confirmed fluoroquinolone resistance.
- Findings stress need for control strategies in hospitals and communities.
Full Abstract:
The level of resistance among Enterobacteriaceae is a concern for global health, and of particular concern is the spread of fecal carriage rates of fluoroquinolone resistance. This research aimed to assess the rates of fecal carriage of fluoroquinolone-resistant E. coli in both hospital and community environments in Damaturu. This study involved random selection of total of 200 participants, comprising 100 hospitalized patients and 100 individuals from the community. A stool sample was collected from every participant. A questionnaire was administered to assess potential risk factors associated with the colonization of resistant bacteria. Ciprofloxacin (CIP) at a concentration of 1 mg/L was used to screen for the colonization of CIP-resistant E. coli using phenotypic and confirmatory techniques. The bacterial isolates were further subjected to a disc diffusion test to confirm resistance. The overall CIP-resistant E. coli rate was 41.5% (83/200). The 19- to 30-year age group included 83 participants, accounting for 41.5% of the total. Among individuals aged 31 years and older, there were 117 participants, accounting for 58.5%. The total comprised 108 males, which is 54.0%, and 92 females, making up 46.0%. In the study population, 58 (29.0%) participants reported having gastrointestinal system issues (diarrhea) at the time of sample collection. The history of antibiotic use among participants in the year preceding the study was 132 (66.0%). There was significant association between gender and CIP-resistant E. coli. A higher prevalence of fecal carriage of fluoroquinolone-resistant E. coli was reported in hospitalized groups (77, 60.0%) than in community groups (51, 39.8%). This research suggests that intestinal colonization by fluoroquinolone-resistant E. coli can occur in both hospital and community settings. Consequently, it is essential to implement control measures to prevent the spread of resistant bacteria.
Downloads
References
Abdallah, H. M., Alneima, N., Reuland, E. A., Winterman, B. B., Koek, A., Abdelwahab, A. M., Samy, A., Abdelsalam, K. W., & Vandenbrouke-Grauls, C. M. J. E. (2017). Fecal carriage of extended spectrum β-lactamase and carbapenemase-producing enterobacteriaceae in Egypt patients with community-onset gastrointestinal complaints: A hospital-based cross-sectional study. Antimicrobial Resistance and Infection Control, 6, 62, 1–7. https://doi.org/10.1186/s13756-017-0219-7
Benameur, Q., Tali-Maamar, H., Assaous, F., Guettou, B., Benklaouz, M. B., Rahal, K., & Ben-Mahdi, M. H. (2018). Characterization of quinolone-resistant Enterobacteriaceae strains isolated from poultry in Western Algeria: First report of qnrS in an Enterobacter cloacae. Veterinary World, 11(4), 469. https://doi.org/10.14202/vetworld.2018.469-473
Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14(4), 933–951. https://doi.org/10.1128/CMR.14.4.933-951.2001
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), 1340. https://doi.org/10.3390/molecules25061340
Caudell, M. A., Mair, C., Subbiah, M., Matthews, L., Quinlan, R. J., Quinlan, M. B., Zadoks, R., Keyyu, J., & Call, D. R. (2018). Identification of risk factors associated with carriage of resistant Escherichia coli in three culturally diverse ethnic groups in Tanzania: A biological and socioeconomic analysis. The Lancet Planetary Health, 2(11), e489–e497. https://doi.org/10.1016/S2542-5196(18)30225-0
Claeys, K. C., Hopkins, T. L., Vega, A. D., & Heil, E. L. (2018). Fluoroquinolone restriction as an effective antimicrobial stewardship intervention. Current Infectious Disease Reports, 20(7), 1–10. https://doi.org/10.1007/s11908-018-0615-z
Da Silva, M. F., Vaz-Moreira, I., Gonzalez-Pajuelo, M., Nunes, O. C., & Manaia, C. M. (2007). Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiology Ecology, 60(1), 166–176. https://doi.org/10.1111/j.1574-6941.2006.00268.x
Dolk, F. C. K., Pouwels, K. B., Smith, D. R., Robotham, J. V., & Smieszek, T. (2018). Antibiotics in primary care in England: Which antibiotics are prescribed and for which conditions? Journal of Antimicrobial Chemotherapy, 73(suppl_2), ii2–ii10. https://doi.org/10.1093/jac/dkx504
Duplessis, C. A., Bavaro, M., Simons, M. P., Marguet, C., Santomauro, M., Auge, B., Collard, D. A., Fierer, J., & Lazarus, J. L. (2012). Rectal cultures before transrectal ultrasound-guided prostate biopsy reduce post-prostatic biopsy infection rates. Urology, 79(3), 556–563. https://doi.org/10.1016/j.urology.2011.09.057
Emrah, R., Jonathan, Z., Kujtesa, H., Arezou, F., Emrah, G., Umut, G., Zafer, E., & Kaya, S. (2019). Extended-spectrum β-lactamase, plasmid-mediated AmpC β-lactamase, fluoroquinolone resistance, and decreased susceptibility to carbapenems in Enterobacteriaceae: Fecal carriage rates and associated risk factors in the community of Northern Cyprus. Antimicrobial Resistance and Infection Control, 8, 98. https://doi.org/10.1186/s13756-019-0548-9
Idowu, T., & Schweizer, F. (2017). Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities. Antibiotics, 6(4), 26. https://doi.org/10.3390/antibiotics6040026
Kotb, D. N., Mahdy, W. K., Mahmoud, M. S., & Khairy, R. M. (2019). Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infectious Diseases, 19(1), 979. https://doi.org/10.1186/s12879-019-4606-y
Kuskucu, M. A., Karakullukcu, A., Ailiken, M., Otlu, B., Mete, B., & Aygun, G. (2016). Investigation of carbapenem resistance and the first identification of Klebsiella pneumoniae carbapenemase (KPC) enzyme among Escherichia coli isolates in Turkey: A prospective study. Travel Medicine and Infectious Disease, 14(6), 572–576. https://doi.org/10.1016/j.tmaid.2016.11.006
Larsson, D. G. (2014). Antibiotics in the environment. Upsala Journal of Medical Sciences, 119(2), 108–112. https://doi.org/10.3109/03009734.2014.896438
Nakano, R., Nakano, A., Abe, M., Nagano, N., Asahara, M., Fujisawa, T., Ohya, H., Yano, H., & Okamoto, R. (2019). Prevalence and mechanism of fluoroquinolone resistance in clinical isolates of Proteus mirabilis in Japan. Heliyon, 5(3), e01291. https://doi.org/10.1016/j.heliyon.2019.e01291
Rather, I. A., Kim, B.-C., Bajpai, V. K., & Park, Y.-H. (2017). Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi Journal of Biological Sciences, 24(4), 808–812. https://doi.org/10.1016/j.sjbs.2017.01.004
Reuland, E. A., Al Naiemi, N., Kaiser, A. M., Heck, M., Kluytmans, J. A. J. W., Savelkoul, P. H. M., Elders, P. J. M., & Vandenbroucke-Grauls, C. M. J. E. (2016). Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in Amsterdam. Journal of Antimicrobial Chemotherapy, 71(4), 1076–1082. https://doi.org/10.1093/jac/dkv441
Ruh, E., Gazi, U., Guvenir, M., Suer, K., & Çakır, N. (2016). Antibiotic resistance rates of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae isolated from a university-affiliated hospital in North Cyprus. Turkish Journal of Hygiene and Experimental Biology, 73, 333–344. https://doi.org/10.5505/TurkHijyen.2016.82653
Sadigov, A., & Akhundova, K. (2017). Risk factors associated with antibiotic-resistant pathogens in community-acquired pneumonia in Azerbaijan Republic. Chest, 152(4), A123. https://doi.org/10.1016/j.chest.2017.08.154
Saksena, R., Gaind, R., Sinha, A., Kaur, C., Cheema, H., & Deb, M. (2018). High prevalence of fluoroquinolone resistance amongst commensal flora of antibiotic naïve neonates: A study from India. Journal of Medical Microbiology, 67(4), 481–488. https://doi.org/10.1099/jmm.0.000686
Schulz, J., Ruddat, I., Hartung, J., Hamscher, G., Kemper, N., & Ewers, C. (2016). Antimicrobial-resistant Escherichia coli survived in dust samples for more than 20 years. Frontiers in Microbiology, 7, 866. https://doi.org/10.3389/fmicb.2016.00866
Shaikh, S., Fatima, J., Shakil, S., Mohd, S., Rizvi, D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. https://doi.org/10.1016/j.sjbs.2014.08.002
Singh, A. K., Das, S., Singh, S., Gautom, R. N., Pradhan, N., Lama, Y. D., & Thakur, H. K. (2018). Prevalence of antibiotic resistance in commensal Escherichia coli among the children in rural hill communities of Northeast India. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0199179
Smith, D. R. M., Dolk, F. C. K., Smieszek, T., Robotham, J. V., & Pouwels, K. B. (2018). Understanding the gender gap in antibiotic prescribing: A cross-sectional analysis of English primary care. BMJ Open, 8(2), e020203. https://doi.org/10.1136/bmjopen-2017-020203
Steensels, D., Slabbaert, K., De Wever, L., Vermeersch, P., Van Poppel, H., & Verhaegen, J. (2012). Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy—should we reassess our practices for antibiotic prophylaxis? Clinical Microbiology and Infection, 18, 575–581. https://doi.org/10.1111/j.1469-0691.2011.03638.x
Stewardson, A. J., Vervoort, J., Adriaenssens, N., Coenen, S., Godycki-Cwirko, M., Kowalczyk, A., Huttner, B. D., Lammens, C., Harbarth, S., & Goossens, H. (2018). Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: A multinational prospective cohort study. Clinical Microbiology and Infection, 24(9), 972–979. https://doi.org/10.1016/j.cmi.2017.12.026
Taha, S. A. (2019). Characterization of plasmid-mediated qnrA and qnrB genes among Enterobacteriaceae strains: Quinolone resistance and ESBL production in Ismailia, Egypt. Egyptian Journal of Medical Human Genetics, 20(1), 26. https://doi.org/10.1186/s43042-019-0026-1
Trautner, B. W. (2018). Fluoroquinolones for urinary tract infection and within-household spread of resistant Enterobacteriaceae: The smoking gun. Clinical Microbiology and Infection, 24(9), 929–930. https://doi.org/10.1016/j.cmi.2018.03.038
Ventola, C. L. (2015). The antibiotic resistance crisis. Pharmacy and Therapeutics, 40(4), 277–283.
Walker, K. J., Young, R. L., & Kirkpatrick, A. R. (2018). Clinical outcomes of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections with susceptibilities among levofloxacin, cefepime, and carbapenems. Canadian Journal of Infectious Diseases and Medical Microbiology. https://doi.org/10.1155/2018/3747521
Williamson, D. A., Lane, C. R., Easton, M., Valcanis, M., Strachan, J., Veitch, M. G., Kirk, M. D., & Howden, B. P. (2018). Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrobial Agents and Chemotherapy, 62(2), e02012-17. https://doi.org/10.1128/AAC.02012-17
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adam Mustapha, Harun Y Ismail, Baba Zanna Sheriff, Mustafa A Isa, Ibrahim Y Ngoshe

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.