Biogas production using co-digestion of Chicken droppings with Ipomoea perfurea grass

Authors

  • Bako, I. Department of Chemical Engineering, Faculty of Engineering, Ahmadu Bello University Zaria, Kaduna State, Nigeria
  • Bilal, S. Department of Chemical Engineering, Faculty of Engineering, Ahmadu Bello University Zaria, Kaduna State, Nigeria
  • Aliyu, A. A. Department of Chemical Engineering, Faculty of Engineering, Ahmadu Bello University Zaria, Kaduna State, Nigeria

DOI:

https://doi.org/10.47430/ujmr.25103.029

Keywords:

Biogas, Mono-digestion, Co-digestion, Mesophilic temperature, Substrate.

Abstract

Study’s Excerpt:

  • Biogas was produced via co-digestion of Ipomoea perfurea and chicken droppings.
  • Simplex Centroid Design (S.C.D.) was used for substrate optimization.
  • Fresh co-substrate A+B gave highest biogas yield (430.5 g/kg).
  • Combustion test showed methane-rich biogas with clean, steady flame.
  • C/N ratio of 21:1 favored optimal biogas production from fresh mixtures.

Full Abstract:

The depletion of fossil fuel reserves, energy crisis, industrialization, rapid growth in population and environmental issues across the globe have aroused interest and attention to be shifted to biofuels (biogas) production. This research focused on biogas production using co-digestion of Chicken droppings with Ipomoea perfurea grass through Simplex Centroid Design (S.C.D). The proximate compositions of the formulated substrates were determined on co-substrates A (Ipomoea perfurea), B (Chicken droppings), and A+B (equal mixture of Ipomoea perfurea and Chicken droppings). The volatility contents were 47.10, 52.60 and 55.80%, while moisture contents were 18.10, 16.01, and 14.20% and carbon contents were 29.26, 26.08, and 24.04% for formulations A, B, and A+B, respectively. The biogas production temperature (mesophilic), ranging between 26oC to 31oC, was observed after 42 days. The optimum yields for dried substrates were 334g/kg for mono substrates (B) and 357g/kg for co-substrates (A+B), while the optimum yield for fresh substrates was 410g/kg for mono-substrate A and 430.5g/kg for co-substrate A+B, respectively. The methane flammability test confirmed the biogas was combustible, and a pale bluish flame that burnt for 1minutes and 45seconds without soot was observed. The least and optimum C/N ratios for dried mono and fresh co-digested substrates were 14:1 and 21:1, respectively. The fresh co-digested substrates produced a better yield than the dried co-digested substrates in the production of biogas for cooking.

Downloads

Download data is not yet available.

References

Adebayo, A. O., Jekayinfa, S. O., Ahmed, N. A., & Ogunkunle, O. (2019). Effect of organic loading rate on biogas yields of pig slurry in a continuously stirred tank reactor at mesophilic temperature. Procedia Manufacturing, 35, 337-342. https://doi.org/10.1016/j.promfg.2019.05.049

Ajiboye, A. V., Lasisi, K. H., & Babatola, J. O. (2018). Evaluation of the effect of sodium hydroxide solution on biogas yield of anaerobic digestion of poultry waste and the digestate. International Journal of Energy and Water Resources, 2(1), 23-31. https://doi.org/10.1007/s42108-018-0003-2

Akintayo, O. A., Hashim, Y. O., Adereti, A. G., Balogun, M. A., Bolarinwa, I. F., Abiodun, O. A., & Alabi, O. F. (2020). Potentials of rice as a suitable alternative for the production of ogi (a cereal-based starchy fermented gruel). Journal of Food Science, 85(8), 2380–2388. https://doi.org/10.1111/1750-3841.15334

Alfa, M. I., Olatunde, S. D., & Oliver, J. (2014). Comparative evaluation of biogas production from poultry droppings, cow dung, and lemon grass. Journal of Bioresource Technology, 57, 270–277. https://doi.org/10.1016/j.biortech.2014.01.108

Aliyu, S. (2019). Biogas production using different wastes: A review. UMYU Journal of Microbiology Research, 4(2), 75–82. https://doi.org/10.47430/ujmr.1942.013

Aremu, M. O., & Agarry, S. E. (2013). Enhanced biogas production from poultry droppings using corn-cob and waste paper as co-substrate. International Journal of Engineering Science and Technology, 5(2), 247–253.

Bagudo, B. U., Garba, B., Dangoggo, S. M., & Hassan, L. G. (2008). Comparative study of calorific values and proximate analysis of biogas from different feedstock. IOP Conference Series: Materials Science and Engineering.

Bastiaans, R. J. (2023). Combustion emissions, health and energy transition aspects: The biomass gas case. Journal ISSN, 2766, 2276. https://doi.org/10.37871/jbres1842

Cellek, M. S., Demir, U., & Coskun, G. (2024). Investigation effects of different calorific values and operating conditions on biogas flame: A CFD study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 8171–8189. https://doi.org/10.1080/15567036.2024.2368489

Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A., & Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. International Journal of Environmental Research and Public Health, 18(11), 6001. https://doi.org/10.3390/ijerph18116001

Dange, P., Pandit, S., Jadhav, D., Shanmugam, P., Gupta, P. K., Kumar, S., Kumar, M., Yang, Y.-H., & Bhatia, S. K. (2021). Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock. Sustainability, 13(16), 8796. https://doi.org/10.3390/su13168796

Dar, R., Parmar, M., Dar, E., Sani, R., & Phutela, U. (2021). Biomethanation of agricultural residues: Potential, limitations and possible solutions. Renewable and Sustainable Energy Reviews, 135, 110217. https://doi.org/10.1016/j.rser.2020.110217

Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2014). Biogas generation through anaerobic digestion process—An overview. Research Journal of Chemistry and Environment, 18(5).

Demarchi, S. M., Ruiz, N. A. Q., De Michelis, A., & Giner, S. A. (2013). Sorption characteristics of rosehip, apple and tomato pulp formulations as determined by gravimetric and hygrometric methods. *LWT-Food Science and Technology, 52*(1), 21–26. https://doi.org/10.1016/j.lwt.2012.12.007

Elsayed, M., Andres, Y., & Blel, W. (2023). Anaerobic co-digestion of linen, sugar beet pulp, and wheat straw with cow manure: Effects of mixing ratio and transient change of co-substrate. Biomass Conversion and Biorefinery, 13(13), 11831–11840. https://doi.org/10.1007/s13399-021-02229-8

Enzmann, F., Mayer, F., Rother, M., & Holtmann, D. (2018). Methanogens: Biochemical background and biotechnological applications. AMB Express, 8(1), 1–1. https://doi.org/10.1186/s13568-017-0531-x

Gawel, S. (2022). Analysis of biogas component production for anaerobic digestion of sour cabbage in microaeration conditions under different pH conditions. Biomass, 2(1), 14–26. https://doi.org/10.3390/biomass2010002

Godbole, A., Wadetwar, R. N., Lawal, T. O., Mahady, G. B., & Raut, N. A. (2023). Microbiology of waste. In *360-Degree Waste Management, Volume 1* (pp. 159–184). Elsevier. https://doi.org/10.1016/B978-0-323-90760-6.00008-4

Hassan, M. S., Saba, A., & Zhu, H. (2023). Methane generation from anaerobic co-digestion of cassava waste and poultry manure: Optimization and kinetic evaluation. Renewable Energy, 209, 842–851. https://doi.org/10.1016/j.renene.2023.03.103

Hussain, Z., Mishra, J., & Vanacore, E. (2020). Waste to energy and circular economy: The case of anaerobic digestion. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-02-2019-0049

Islam, M. A., Biswas, P., Sabuj, A. A. M., Haque, Z. F., Saha, C. K., Alam, M. M., and Saha, S. (2019). Microbial load in bio-slurry from different biogas plants in Bangladesh. Journal of advanced veterinary and animal research, 6(3), 376. https://doi.org/10.5455/javar.2019.f357

James, N. D., de Bono, J. S., Spears, M. R., Clarke, N. W., Mason, M. D., Dearnaley, D. P., ... & Sydes, M. R. (2017). Abiraterone for prostate cancer not previously treated with hormone therapy. New England Journal of Medicine, 377(4), 338–351. https://doi.org/10.1056/NEJMoa1702900

Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

Kucuker, M. A., Demirel, B., & Onay, T. T. (2020). Enhanced biogas production from chicken manure via enzymatic pretreatment. Journal of Material Cycles & Waste Management. https://doi.org/10.1007/s10163-020-01039-w

Kumar, R., Patel, S., & Mehta, P. (2021). Microbial synergy and antagonism in mixed cultures: Ecological and industrial perspectives. Journal of Microbial Ecology, 49(3), 210–219. https://doi.org/10.1016/j.jmeco.2021.03.004

Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Yu, Z., & Zhang, Y. (2015). Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technology, 194, 276-282. https://doi.org/10.1016/j.biortech.2015.06.112

Liew, C. S., Yunus, N. M., Chidi, B. S., Lam, M. K., Goh, P. S., Mohamad, M., ... & Lam, S. S. (2022). A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423, 126995. https://doi.org/10.1016/j.jhazmat.2021.126995

Marbaix, J., Mille, N., Carrey, J., Soulantica, K., & Chaudret, B. (2021). Magnetically induced nanocatalysis for intermittent energy storage: Review of the current status and prospects. Nanoparticles in Catalysis: Advances in Synthesis and Applications, 307–329. https://doi.org/10.1002/9783527821761.ch14

Mézes, L., Bai, A., Nagy, D., Cinka, I., & Gabnai, Z. (2017). Optimization of raw material composition in an agricultural biogas plant. Trends in Renewable Energy, 3(1), 1–10. https://doi.org/10.17737/tre.2017.3.1.0031

Mukhtar, F., Abubakar, A., Saulawa, U. A., & Garba, H. (2018). Biogas production from cow dung for sustainable energy generation. UMYU Journal of Microbiology Research, 3(1), 81–86. https://doi.org/10.47430/ujmr.1831.013

Musa, B., & Raji, H. M. (2016). Quantitative and qualitative analysis of biogas produced from three organic wastes. International Journal of Renewable Energy Research, 6(1), 299–305.

Natthawud, D., Rameshprabu, R., & Tapana, C. (2017). Biotechnological application of biogas production from locally sourced substrate materials. Nigerian Journal of Basic and Applied Sciences, 16(2).

Natthawud, D., Rameshprabu, R., & Tapana, C. (2017). Biotechnological application of biogas production from locally sourced substrate materials. Nigerian Journal of Basic and Applied Sciences, 16(2).

Ofoefule, A. U., & Ibeto, C. N. (2010). Effect of chemical treatment on biogas production from Bambara nut chaff and its blend with wastes. Biomass Unit, National Centre for Energy Research & Development, University of Nigeria, Nsukka. https://doi.org/10.1109/ESD.2010.5598797

Ojo, A. O., Lasisi, K. H., Nurudeen, S. A., Akinmusere, O. K., & Babatola, J. O. (2019). Engineering design of combined septic tank with treatment facilities for partial treatment of wastewater. Research Article.

Okafor, E. D. I. F., & Ugwuoke, P. E. (n.d.). *Proceedings of the 4th International Conference/Training Workshop on Energy for Sustainable Development in Africa.*

Okewale, A. O., and Adesina, O. A. (2019). Evaluation of biogas production from co-digestion of pig dung, water hyacinth and poultry droppings. Waste Disposal & Sustainable Energy, 1(4), 271-277. https://doi.org/10.1007/s42768-019-00018-8

Olawole, S. I., & Opeyemi, S. A. (2014). Evaluating the biogas yield and design of biodigester to generate cooking gas from human faeces. Leonardo Electronic Journal of Practices and Technologies, 13(24), 1–12.

Osatogbe, A. J., Attah, D. D., Manga, S. S., & Farouq, A. A. (2024). Bacteria isolates from oral cavities of malnourished children at Specialist Hospital, Sokoto, Nigeria. International Journal of Medical Research and Health Sciences, 7(4), 1–21.

Owamah, H. I. (2019). Optimization of biogas production through selection of appropriate Inoculum-to-Substrate ((I/S) ratio. Nigerian Journal of Technological Development, 16(1), 17-24. https://doi.org/10.4314/njtd.v16i1.3

Oyewole, M. O., Olugasa, T. T., & Odesola, I. F. (2014). Energy production from biogas: A conceptual review for use in Nigeria. Renewable and Sustainable Energy Reviews, 32, 770–776. https://doi.org/10.1016/j.rser.2013.12.013

Oyewole, O. A. (2010). Biogas production from chicken droppings. Science World Journal, 5(4).

Pedizzi, C., Rodriguez, I., Rodriguez, I., Verde, Lema, J. M., & Carballa, M. (2016). Effect of oxygen on the microbial activities of thermophilic anaerobic biomass. Bioresource Technology, 211, 765–768. https://doi.org/10.1016/j.biortech.2016.03.085

Romero-Guiza, M. S., Peces, M., Astals, S., Benavent, J., Valls, J., and Mata Alvarez, J. (2014). Implementation of Proto type Optical Sorter as Core of the new Pretreatment Configuration of a Mechanical- Biological Treatment Plant Treating of MSW through anaerobic-digestion. Applied energy. 135: 63 -70. https://doi.org/10.1016/j.apenergy.2014.08.077

Sachin, K. G., Chandan, B. M., & Sagar, M. A. (2023). Experimental investigation and optimization of light transmitting brick using ANOVA method of regression using Minitab software. Materials Today: Proceedings.

Saleem, H., Sadaqat, H. A., Razzaq, H., & Ramazan, J. (2022). Sorghum as a Potential Source of Sustainable Bioenergy Crop. J Agric For Meterol Stud, 1(1), 1 -6.

Samadi, M. T., Leili, M., Rahmani, A., Moradi, S., & Godini, K. (2024). Anaerobic co-digestion using poultry slaughterhouse and vegetable wastes to enhance biogas yield: Effect of different C/N ratios. Biomass Conversion and Biorefinery, 14(22), 28303–28311. https://doi.org/10.1007/s13399-022-03501-1

Sharma, N., Yadav, A., Yadav, S., Singh, S., Sharma, A. K., & Kumar, S. (2025). Insights into application of novel citric acid modified Saccharum munja biosorbent for facile removal of fuchsin basic dye, crystal violet dye and copper metal ion: Statistical modelling, kinetics, thermodynamics and equilibrium studies. Biomass Conversion and Biorefinery, 15(5), 7139–7162. https://doi.org/10.1007/s13399-024-05521-5

Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., & Awasthi, M. K. (2019). Biofuel production from biomass: Toward sustainable development. Current Developments in Biotechnology and Bioengineering (pp. 79–92). https://doi.org/10.1016/B978-0-444-64083-3.00005-1

Smith, L., & Jones, T. (2020). Fungal and bacterial dynamics in cohabited environments: Patterns of interaction and competition. Microbiology Research Reports, 38(2), 155–162. https://doi.org/10.1016/j.micres.2020.02.009

Song, Y., Pei, L., Chen, G., Mu, L., Yan, B., Li, H., & Zhou, T. (2023). Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. Science of the Total Environment, 861, 160552. https://doi.org/10.1016/j.scitotenv.2022.160552

Tambuwal, A. D., & Ogbiko, C. (2018). Proximate and chemical analyses of selected agricultural wastes used for biogas production. *SRA-Archives, 9*(1), 55–60.

Ugochukwu, C. O., Ejiroghene, O., & Anthony, O. O. (2016). Comparative study of the optimal ratio of biogas production from various organic waste and weeds for digester and retard digester. Journal of King Saud University - Engineering Sciences.

Vaishnavi, S. M., & Ganesh, A. H. (2023, December). Proximate analysis of lignocellulose biomass used for production of biogas anaerobically. In AIP Conference Proceedings (Vol. 2901, No. 1, p. 050003). AIP Publishing LLC. https://doi.org/10.1063/5.0179193

Wall, A. M., Allien, E., Herrmann, C., Xia, A., & Murphy, J. D. (2015). Gross energy yield of third generation gaseous biofuels sourced from seaweed. Energy, 81, 352–360. https://doi.org/10.1016/j.energy.2014.12.048

Wang, D., Huang, H., Jiang, Y., Duan, X., Lin, X., Aghdam, M. S., & Luo, Z. (2022). Exogenous phytosulfokine α (PSKα) alleviates chilling injury of banana by modulating metabolisms of nitric oxide, polyamine, proline, and γ-aminobutyric acid. Food Chemistry, 132179. https://doi.org/10.1016/j.foodchem.2022.132179

Zhang, X., Witte, J., Schildhauer, T., & Bauer, C. (2020). Life cycle assessment of power-to-gas with biogas as the carbon source. Sustainable Energy & Fuels, 4(3), 1427-1436. https://doi.org/10.1039/C9SE00986H

Published

30-06-2025

How to Cite

Bako, I., Bilal, S., & Aliyu, A. A. (2025). Biogas production using co-digestion of Chicken droppings with Ipomoea perfurea grass. UMYU Journal of Microbiology Research (UJMR), 10(3), 290–301. https://doi.org/10.47430/ujmr.25103.029