Electricity Generation by a Phototrophic Bacterium in a Glucose−Fed Double Chambered Microbial Fuel Cell Using a Fabricated 3D Anode Electrode

Authors

DOI:

https://doi.org/10.47430/ujmr.2493.041

Keywords:

phototrophic bacteria (PTB), microbial fuel cell (MFC), 3D electrode, Dysgonomonas

Abstract

Study’s Novelty/Excerpt

  • This study presents an approach to enhancing microbial fuel cell (MFC) performance by employing phototrophic bacteria (PTB) and sustainable electrode materials, specifically a 3D anode electrode fabricated from reduced graphene oxide (rGO) and nickel (Ni) foam.
  • By integrating morphological, biochemical, and molecular techniques to identify the electrochemically active PTB, the research achieved a significant eight-fold increase in power density using rGO-Ni electrodes compared to conventional Ni electrodes.
  • This work underscores the potential of utilizing sustainable materials and PTB to improve MFC efficiency and economic viability, offering a promising direction for sustainable bioelectricity generation.

Full Abstract

Over the past years, despite intensified research on microbial fuel cells (MFC), low power densities were recorded, reducing the productivity and economic viability of the process. This necessitated testing various MFC configurations, fabricating various electrodes, and evaluating various substrate types and species of electrogenic microorganisms to improve MFC performance. Despite the dual advantage of phototrophic bacteria (PTB), metabolizing organic waste substances and generating electricity, less research was conducted on the bacterium. Although a significant amount of energy is generated using unsustainable (fossil-based) materials in electrode fabrication, this study focuses on using sustainable materials like carbon cloth and graphite to fabricate a 3D anode electrode to exploit the maximum energy generated by PTB. The PTB used in this study was identified through morphological characteristics and biochemical tests (catalase and oxidase) and confirmed using a molecular technique: 16S rRNA sequencing. Preliminary results indicated that the PTB was gram-negative, spherical in shape, non−motile, and facultatively anaerobic bacterium. Analysis of the 16S rRNA partial sequence was conducted in GenBank databases. 100 significant sequences with the lowest and highest similarities of 84.10% and 98.76% were recorded, respectively. Of these, 13 strains had the highest similarities of >90%, all belonging to the genus Dysgonomonas, with D. oryzarvi Dy73 (98.76%) as the closest. Reduced graphene oxide (rGO) used as the anode was prepared using Hummer’s method by depositing the rGO on nickel (Ni) foam which changed the colour of Ni from grey to black after depositing and annealing. In addition to the SEM images, which showed a continuous multi−layered 3D scaffold on the Ni, the cyclic voltammetry (CV) analyses indicated an increase in the electrochemical activities of the rGO−Ni electrode compared to Ni. The CV also confirmed the bacterium to be electrochemically active. The 100 mL glucose−fed two−chamber MFC were separately run with the Ni and rGO–Ni as anode electrodes in a batch mode for 11 days, while carbon cloth was used as the cathode for both runs. An approximate 0.58 W/m2 power density was recorded for Ni, but eight−fold of Ni’s, 4.9 W/m2was generated by rGO−Ni. The study demonstrated that using fabricated 3D rGO–Ni as anode electrode can increase the microbial adhesion and power density of bacterium in MFC, thereby providing a more applicable and sustainable alternative to bioelectricity generation.

Downloads

Download data is not yet available.

References

Aelterman, P., Rabaey, K., Pham, T. H., Boon, N., &Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science Technology, 40, 3388–3394. https://doi.org/10.1021/es0525511

Alimonti, G. (2018). Our energy future starts from actual energy limits, EPJ Web of Conferences, 189, 00003. https://doi.org/10.1051/epjconf/201818900003

Apollon, W., Luna-Maldonado, A. I., Kamaraj, S.-K., Vidales-Contreras, J. A., Rodríguez-Fuentes, H., Gómez-Leyva, J. F., Maldonado-Ruelas, V. A., & Ortiz-Medina, R. A. (2023a). Self-sustainable nutrient recovery associated to power generation from livestock’s urine using plant-based bio-batteries. Fuel, 332, 126252. https://doi.org/10.1016/j.fuel.2022.126252

Apollon, W., Kamaraj, S., Rodríguez-Fuentes, H., Florencio, J. G., Antonio, J. V., Verónica, M. M. & Isabel, A. L. (2023b). Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate, Biofuels, https://doi.org/10.1080/17597269.2023.2277991

Azhary, S.-M., Almofti, Y.-A., Mustafa, E. A., Fagirii, S.-A. (2020). Antibiotic resistance profile of bacterial isolates from dairy farms manure in Bahri locality, Sudan. International Journal of Modern Pharmaceutical Research, 4(5), 99-110.

Canfield, J., Goldner, B., Lutwack, R. (1963). NASA Technical report. Magna Corporation, Anaheim, CA;63

Chen, J. Y., Li, N., & Zhao, L. (2014). Three−dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. Journal of Power Sources, 254, 316−322. https://doi.org/10.1016/j.jpowsour.2013.12.114

Cheng, P., Shan, R., Yuan, H. R., Shen, W. J., & Chen, Y. (2020). Bioelectricity generation from the salinomycin−simulated livestock sewage in a Rhodococcus pyridinivorans inoculated microbial fuel cell. Process Safety and Environmental Protection, 138, 76−79. https://doi.org/10.1016/j.psep.2020.03.003

Cozzi, L., Wetzel, D., Tonolo, G. (2022). The pandemic, inflation and the energy crisis have set back global progress on universal access to electricity, which must be a top priority at COP27. International Energy Agency https://www.iea.org/commentaries/for−the−first−time−in−decades−the−number−of−people−without−access−to−electricity−is−set−to−increase−in−2022 (accessed 03/03/2023).

Davis, F., Higson, S. P. J. (2007). Biofuel cells−Recent advances and applications. Biosens Bioelectron; 22,1224−35. https://doi.org/10.1016/j.bios.2006.04.029

Dharmappa, D. C., Anokhe, A., & Kalia, V. (2022). Oxidase Test: A Biochemical Methods in Bacterial Identification. AgriCose-Newsletter, 3(1).

Du, Z., Li, H., Gu, T. (2007). A state−of−the−art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advance; 25, 464−82. https://doi.org/10.1016/j.biotechadv.2007.05.004

Eslami, S., Bahrami, M., Zandi, M., Fakhar, J., Gavagsaz-Ghoachani, R., Noorollahi, Y., Phattanasak, M., Nahid-Mobarakeh, B. (2023). Performance investigation and comparison of polypropylene to Nafion117 as the membrane of a dual-chamber microbial fuel cell. Cleaner Materials,Vol. 8, 100184. https://doi.org/10.1016/j.clema.2023.100184.

European Investment Bank, 2022. https://www.eib.org/en/publications/wastewater−as−a−resource (accessed 03/03/2023).

Fischer, F. (2018). Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renewable and Sustainable Energy Reviews, Vol. 90, 16-27. https://doi.org/10.1016/j.rser.2018.03.053.

Ghangrekar, M. M., & Nath, D. (2022). Microbial electrochemical technologies for wastewater treatment: insight into theory and reality. In Clean Energy and Resource Recovery (pp. 179−200). Elsevier. https://doi.org/10.1016/B978-0-323-90178-9.00004-4

Guo, H., Xie, S., Huang, C., Tang, S., Geng, X., & Jia, X. (2022). An electricity−generating bacterium separated from oil sludge microbial fuel cells and its environmental adaptability. Environmental Science and Pollution Research, 1−10. https://doi.org/10.1007/s11356-022-22467-1

Guo, K., Hassett, D. J., Gu, T. (2012). Microbial fuel cells: electricity generation from organic wastes by microbes. In: Arora R, editor. Microbial biotechnology: energy and environment. United Kingdom: CAB International; p. 162−89. https://doi.org/10.1186/1475-2859-11-130

Haruna, S., Yusuf, H., Gumel, A. M., Buhari, A. S., & Abubakar, U. U. (2024). Generation of bioelectricity in microbial fuel cell using kitchen waste obtained from Dutse urban, Nigeria. Dutse Journal of Pure and Applied Sciences, 9(4a), 94-104. https://doi.org/10.4314/dujopas.v9i4a.8

Hou, J., Liu, Z., Yang, S., & Zhou, Y. (2014). Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. Journal of Power Sources, 258, 204-209. https://doi.org/10.1016/j.jpowsour.2014.02.035.

Hu, H., Fan, Y., Liu, H. (2008). Water Res., 42, 4172−4178. https://doi.org/10.1016/j.watres.2008.06.015

International Energy Agency, 2022. iea.org (accessed 03/03/2023).

International Renewable Energy Agency, 2024. https://www.irena.org/Publications/2024/Jun/Tracking-SDG-7-The-Energy-Progress-Report-2024 (accessed 01/07/2024)

Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., Kim, B. H. (2004). Construction and operation of a novel mediator− and membrane−less microbial fuel cell. Process Biochemistry 39(8),1007–1012. https://doi.org/10.1016/S0032-9592(03)00203-6

Kim, H-W., Nam, J-Y., & Shin, H-S. (2011). Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. Lancet. 196. 6210-6213. https://doi.org/10.1016/j.jpowsour.2011.03.061.

Kodama, Y. & Watanabe, K. (2008). An electricity−generating prosthecate bacterium strain Mfc52 isolated from a microbial fuel cell. FEMS Microbiology Letter288, 55–61. https://doi.org/10.1111/j.1574-6968.2008.01326.x

Kumar, R., Singh, L., Zularisam, A.W. (2017). Microbial Fuel Cells: Types and Applications. In: Singh, L., Kalia, V. (eds) Waste Biomass Management – A Holistic Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_16

Lawan, S. M., Abba, I., Bala, B. D., Abdullahi, A. Y., & Aminu, A. (2018). Clean energy generation using groundnut oil mill effluent with microbial fuel-cell. Nigerian Journal of Technology, 37(4), 1076. https://doi.org/10.4314/njt.v37i4.29

Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of visualized experiments: JoVE, (62), 3923. https://doi.org/10.3791/3923

Liang, H., Han, J., Yang, X., Qiao, Z., Yin, T. (2022). Performance improvement of microbial fuel cells through assembling anodes modified with nanoscale materials. Nanomaterials and Nanotechnology, 12. https://doi.org/10.1177/18479804221132965

Logan, B. E., Regan, J. M. (2006). Electricity−producing bacterial communities in microbial fuel cells. Trends Microbiology; 14, 512−8. https://doi.org/10.1016/j.tim.2006.10.003

Mejía-López, M., Lastres, O., Alemán-Ramirez, J. L., Lobato-Peralta, D. R., Verde, A., Monjardín, J. J. G., López de Paz, P., Verea, L. (2023). Conductive carbon-polymer composite for bioelectrodes and electricity generation in a sedimentary microbial fuel cell. Biochemical Engineering Journal, Vol. 193, 108856. https://doi.org/10.1016/j.bej.2023.108856.

Moyes, R. B., Reynolds, J., & Breakwell, D. P. (2009). Differential staining of bacteria: gram stain. Current Protocols in Microbiology, 15(1), A-3C. https://doi.org/10.1002/9780471729259.mca03fs15

Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology;101, 1533−43. https://doi.org/10.1016/j.biortech.2009.10.017

Pişkin, E. D. & Genç, N. (2023). Multi response optimization of waste activated sludge oxidation and azo dye reduction in microbial fuel cell, Environmental Technology, https://doi.org/10.1080/09593330.2023.2179422

Potter, M. C. (1911). Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc R Soc Lond [Biol]; 84, 260−76. https://doi.org/10.1098/rspb.1911.0073

Qi, X., Ren, Y., Liang, P., & Wang, X. (2018). New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria. Bioresource technology, 258, 310−317. https://doi.org/10.1016/j.biortech.2018.03.058

Rahmani, A. R., Navidjouy, N., Rahimnejad, M., Alizadeh, S., Samarghandi, M. R., & Nematollahi, D. (2022). Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment. Environmental Technology, 43(1), 1−9. https://doi.org/10.1080/09593330.2020.1772374

Ren, H., Pyo, S., Lee, J. I., Park, T. J., Gittleson, F. S., Leung, F. C., ... & Chae, J. (2015). A highpower density miniaturized microbial fuel cell having carbon nanotube anodes. Journal of Power Sources, 273, 823−830. https://doi.org/10.1016/j.jpowsour.2014.09.165

Robb, A. J., Knorr, E. S., Watson, N., & Hanson, K. (2020). Metal ion linked multilayers on mesoporous substrates: Energy/electron transfer, photon upconversion, and more. Journal of Photochemistry and Photobiology A: Chemistry, 390, 112291. https://doi.org/10.1016/j.jphotochem.2019.112291

Röder, M., Welfle, A. (2019). Bioenergy, Editor(s): Trevor M. Letcher, Managing Global Warming, Academic Press, 12, 379-398. https://doi.org/10.1016/B978-0-12-814104-5.00012-0

Sato, C., Apollon, W., Luna-Maldonado, A. I., Paucar, N. E., Hibbert, M., Dudgeon, J. (2023). Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy–Water–Food Supply System. Membranes. 13(9), 803. https://doi.org/10.3390/membranes13090803

Sharma, S. C., Feng, C., Li, J., Hu, A., Wang, H., Qin, D., & Yu, C. P. (2016). Electrochemical Characterization of a Novel Exoelectrogenic Bacterium Strain SCS5, Isolated from a Mediator-Less Microbial Fuel Cell and Phylogenetically Related to Aeromonas jandaei. Microbes and environments, 31(3), 213–225. https://doi.org/10.1264/jsme2.ME15185

Shirkosh, M., Hojjat, Y., Mahdi, M. M. (2022). Evaluation and optimization of the Zn-based microfluidic microbial fuel cells to power various electronic devices. Biosensors and Bioelectronics: X, Vol. 12,100254. https://doi.org/10.1016/j.biosx.2022.100254.

Sonaware, J.-M., Yadav, A., Ghosh, P.-C., Adeloju, S.-B. (2017). Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosensors and Bioelectronics: 90, 558-576. http://dx.doi.org/10.1016/j.bios.2016.10.014

Statistica, 2024. www.statista.com/statistics/280704/world-power-consumption (accessed 26/02/2024)

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120

Tan, L., Li, S.-J., Wu, X.-T., Li, N., & Liu, Z.-Q. (2018). Porous Co3O4 decorated nitrogen-doped graphene electrocatalysts for efficient bioelectricity generation in MFCs. International Journal of Hydrogen Energy, 43(22), 10311–10321. https://doi.org/10.1016/j.ijhydene.2018.04.074

Tian, P., Liu, D., Li, K., Yang, T., Wang, J., Liu, Y., & Zhang, S. (2017). Porous metal−organic framework Cu3(BTC)2 as catalyst used in air−cathode for high performance of microbial fuel cell. Bioresource technology, 244, 206−212. https://doi.org/10.1016/j.biortech.2017.07.034

Tou, Y., Azri, M., Sadi, M., Lounici, H. & kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization, International Journal of Green Energy, 16(12), 947-959. https://doi.org/10.1080/15435075.2019.1650049

Wang, C., Xing, Y., Zhang, K., Zheng, H., Zhang, Y., Zhu, X., Yuan, X., & Qu, J. (2023). Evaluation of photocathode coupling-mediated hydroxychloroquine degradation in a single-chamber microbial fuel cell based on electron transfer mechanism and power generation. Journal of Power Sources, 559, 232625. https://doi.org/10.1016/j.jpowsour.2022.232625

Wang, H., Li, J., Hu, A., Qin, D., Xu, H., Yu, C. P. (2013). Melaminivora alkalimesophila gen. nov., sp. nov., a melamine−degrading beta proteobacterium isolated from a melamine−producing factory. Int J Syst Evol Microbiol. 64, 1938– 1944. https://doi.org/10.1099/ijs.0.055103-0

Web of Science, (2023). https://www.webofscience.com/wos/woscc/summary/7a9ec50a-95d6-4911-9c37-999bf780d9bf-fc87c054/relevance/1 (accessed 10/01/2023)

Wolf, J., Johnston, R. B., Ambelu, A., Arnold, B. F., Bain, R., Brauer, M., Brown, J., Caruso, B. A., Clasen, T., Colford, J. M., Jr, Mills, J. E., Evans, B., Freeman, M. C., Gordon, B., Kang, G., Lanata, C. F., Medlicott, K. O., Prüss-Ustün, A., Troeger, C., Boisson, S., Cumming, O. (2023). Burden of disease attributable to unsafe drinking water, sanitation, and hygiene in domestic settings: a global analysis for selected adverse health outcomes. Lancet (London, England), 401(10393), 2060–2071. https://doi.org/10.1016/S0140-6736(23)00458-0

Xing, D., Zuo, Y., Cheng, S., Regan, J. M., Logan, B. E. (2008). Electricity generation by Rhodopseudomonas palustris DX−1. Environ Sci Technol42(11), 4146–4151. https://doi.org/10.1021/es800312v

Downloads

Published

29-06-2024

How to Cite

Aliyu, A. A., & Dahiru, R. (2024). Electricity Generation by a Phototrophic Bacterium in a Glucose−Fed Double Chambered Microbial Fuel Cell Using a Fabricated 3D Anode Electrode. UMYU Journal of Microbiology Research (UJMR), 9(3), 336–349. https://doi.org/10.47430/ujmr.2493.041