Assessment of the Phytoremediation Activity of the Rhizobacterial Flora of Arachis hypogaea (Groundnut) on Hydrocarbon Contaminated Soil

Authors

  • Manga, S. S. Department of Biological Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
  • Nwosu, C. O. Department of Biological Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria
  • Bazata, Y. A. Department of Microbiology, Federal University Birnin-Kebbi, Birnin-Kebbi, Nigeria
  • Isah, M. Department of Biological Sciences, Kebbi State University of Science and Technology, Aliero, Nigeria

DOI:

https://doi.org/10.47430/ujmr.1941.005

Keywords:

Arachis hypogaea, Bacteria flora, Hydrocarbon-Contaminated Soil, Oil Spillage, Phytoremediation

Abstract

Over the years, Nigeria’s development has accelerated due to crude oil exploaration. In spite of its enormous benefits, it has wreaked much havoc and damage on the ecosystem due to its toxicity. The study evaluated hydrocarbon degradation potentials by the rhizobacterial flora of the legume Arachis hypogaea (Groundnut) grown in potted sandy-loamy soil samples in the green house of Kebbi State University of Science and Technology, Aliero, Nigeria. Crude oil concentrations of 0.5, 1.0, 2.0, 2.5, 5.0, 10.0, 15.0, and 20.0mls were used to contaminate the soil samples respectively. All soil samples apart from the control were polluted. Groundnut germinated after seven days at concentration of 0.0 to 2.5% but at higher concentration of 5.0% of the contaminant, the germination time increased to nine days and at concentration 20%, it increased to ten (10) days. Even though groundnut germination was observed in all concentrations of crude oil tested, significant shoot retardation still occurs in both legumes consequent on crude oil toxicity. Rhizobacterial population also diminished with increase in crude oil concentration. The rhizobacterial population diminished with increase in crude oil concentration. The rhizobacteria isolated from the soil sample include Bacillus subtilis, Clostridium tetani, Staphylococcus aureus, Proteus vulgaris, and Enterobacter aerogenes. Rhizobacterial population also diminished with increase in crude oil concentration. The study revealed the resistance of groundnut to crude oil (p<0.05), marking groundnut out as a promising phytoremediation plant.

 

Downloads

Download data is not yet available.

References

Adam, G. and Duncan, H., (2002). Influence of diesel on seed germination. Environmental Pollution, 120: 363-370.

https://doi.org/10.1016/S0269-7491(02)00119-7

Adoki A, Orugbani T (2007). Influence of nitrogenous fertilizer plants effluents on growth of selected farm crops in soils polluted with crude petroleum hydrocarbons. African Journal of Agricultural Research, 2 (11): 569-573.

Amadi, A., Abbey, S. D., Nma, A., (1996).Chronic effects of oil spill on soil properties and microflora of rain forest ecosystem in Nigeria. Water Air Soil Pollut, 86: 1-11.

https://doi.org/10.1007/BF00279142

Amadi, A., Abbey, S. D., Nma, A., (1996).Chronic effects of oil spill on soil properties and microflora of rain forest ecosystem in Nigeria. Water Air Soil Pollut, 86: 1-11.

https://doi.org/10.1007/BF00279142

Amanda, V. E. (2006). Phytoremediation of petroleum hydrocarbons. Report on environmental careers organization for U.S. Environmental Protection Agency (USEPA). Office of Solid Waste and Emergency Response. Office of Superfund Remediation and Technology Innovation Washington, D.C. 1-12 pp. http://www.epa.gov

Anderson, J. W., Neff, J. M., Cox, B. A., Totem, H. E., and Hightower, G. M., (1974). Characteristics of dispersions and water soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology, 27: 75-88.

https://doi.org/10.1007/BF00394763

Bamidele, J. F. and Igiri, A. (2011). Growth of seashore paspalum (Paspalum vaginatum) in soil contaminated with crude petroleum oil. J. Appl. Sci. Environ. Manage, 15 (2): 303-306.

https://doi.org/10.4314/jasem.v15i2.68514

Burken, J. G., and Schnoor J. L., (1996). Phytoremediation: Plant uptake of atrazine and role of root exudates. J. Environ. Qual., 29: 549-578.

Cheesbrough, M. (2002). District Laboratory Practices in Tropical Countries Part 2.Cambridge University Press, UK.

Chin-A-Woeng, T. E. C., Bloemberg, G. V., Van der Bij, A. J., Van der Drift, K. M, Schripsema, J., Kroon, B., Scheffer, R. J, Thomas, J. E., Luternberg, B. J. (1998). Biocontrol by Phenazine-I-carbonxamide- producing Pseudomonas Chlororaphis PCL 1391 of tomato rot caused by Fusariumoxy sporum F. Sp. Radicis-lycopercisi. Mol. Plant Microbe Interact., 11: 1069-1077.

https://doi.org/10.1094/MPMI.1998.11.11.1069

Clegg, C. and Murray, P. (2002). Soil microbial ecology and plant root interactions. Iger Innovations, 2 (2): 68-76.

Clemente, A. R., Anazawa, T. A. and Durrant,L. R. (2001). Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazilian Journal of Microbiology, 32: 255-261.

https://doi.org/10.1590/S1517-83822001000400001

Debojit, B., Jitu, B., Sarada, K. S., (2011). Impact of Assam petroleum crude oil on the germination of four crude oil- resistant species. Asian J. Plant Sci. Res., 1 (3): 68-76.

Eze, C. N., Maduka, J. N., Ogbonna, J. C. and Eze, E. A. (2013). Effects of Bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Scientific Research and Essays, 8 (2): 99 -107.

Ghazali, F. M., Rahman, R. N. Z .A., Salleh, A.B. and Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation, 54: 61-67.

https://doi.org/10.1016/j.ibiod.2004.02.002

Gibson, D. T. and Parales, R. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 1 1: 236 -243.

https://doi.org/10.1016/S0958-1669(00)00090-2

Gomes, R. V., Martins, S. C. S. and Melo, V. M. M., (2004). Produção de biossurfactante por Staphylococcus aureus isolado de uma amostra de petróleo pesado. IX ENAMA - Encontro nacional de Microbiologia Ambiental, Curitiba, Brazil, 34: 61-67.

Husaini, A., Roslan, H. A., Hii, K. S. Y. and. Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24: 2789 - 2797.

https://doi.org/10.1007/s11274-008-9806-3

Ijah, U. J. J. and Antai, S. P. (1988). Degradation and Mineralization of crude oil by bacteria. Nigeria Journal of Biotechnology, 5: 79-86.

Kuiper, I., Kravchenko I., Bloemberg G.V., Lutenberg B.J.J., (2002). Pseudomonas putida strain PCL 1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudates components. Mol. Plant-Microbe Interact. 15:734- 741.

https://doi.org/10.1094/MPMI.2002.15.7.734

Labud, V., Garcia, C., and Hernandez, T., (2007). Effects of hydrocarbon pollution on the microbial properties of a sandy and clay soils. Chemosphere, 66: 1863-1871.

https://doi.org/10.1016/j.chemosphere.2006.08.021

Lin, Q., Mendelsshohn, I. A. (2009). Potential of restoration and phytoremediation with Juncus roemerianus for diesel- contaminated coastal wetlands. Ecol. Eng., 35: 85-91.

https://doi.org/10.1016/j.ecoleng.2008.09.010

Maila, M. P, and Cloete, I. E. (2002). Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int.Biodeter. Biodeg., 50: 107-113.

https://doi.org/10.1016/S0964-8305(02)00059-8

Malek-Hossein, S., Gholamreza, S., (2007). Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil- contaminated soil. Res. J. Agric. Biol. Sci., 3 (1): 46-51.

Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C .A. and Reynolds, C. M (1997). Rhizosphere microbial Populations in contaminated soils. Water Air Soil Pollut., 95: 165-178.

https://doi.org/10.1007/BF02406163

Njoku, K. L., Akinola, M. O. and Taiwo, B. G. (2009). Effect of gasoline diesel fuel mixture on the germination and growth of Vigna unguiculata (cowpea). Journal of Environmental Science and Technology. 3 (12): 466-471.

Nwadinigwe, A. O. and Onyeidu, E. (2012). Bioremediation of crude oil polluted soil using bacteria, monitored through Soyabean production. Polish Journal of Environmental Studies, 21 (1): 171-176.

Nwadinigwe, A. O., and Ezeamama, N. C., (2007). Combating the effects of crude oil pollution on Sennaobtusifolia using fertilizer, poultry manure and Penicillium. Nigerian Journal of Botany, 20 (1): 133-137.

Nwadinigwe, A. O., and Olawole, A. O., (2010). Effects of crude oil on the growth of Sorghum vulgare Pers. A possible use of the plant for phytoremediaion. International Journal of Botany, 2 (1):35- 39.

Oyeleke, S. B. and Manga, B. S. (2008). Essential of Laboratory Practical in Microbiology. (1st edition) Tsobest Publication, Nigeria.

Plohl, K., Leskovsek, H. and Bricelj, M. (2002). Biological degradation of motor oil in water. Actachimslovenica, 49: 279-289.32

Raboy, V. (2002). Progress in breeding low phytate crops. Am. So. Nutr. Sci. J. Nutr., 67 (6): 2649-2656.

Rui, L., Rajendrasinh, N. J., Qixing, Z. and Zhe, L. (2012). Treatment and remediation of petroleum contaminated soils using selective ornamental plants. Environmental Engineering Science, 29 (6): 494-501.

https://doi.org/10.1089/ees.2010.0490

Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M. R., Vipond, T. E., Western, M. M., Wisniewski, H. L., (2004). Crude Oil Hydrocarbon Bioremediation and Soil Ecotoxicity Assessment. Environ. Sci. Technol., 31: 1769-1776.

https://doi.org/10.1021/es960793i

Schroder, P., Harvey, P. J. and Schwitzguebel,J. P. (2002). Prospects for phytoremediation of organic pollutants in Europe. Environmental Science and Pollution, 9 (1): 1-3.

https://doi.org/10.1007/BF02987312

Sparrow, S. D. and Sparrow, E. B. (1988). Microbial biomass and activity in a subarctic soil ten years after crude oil spills. J. Environ. Qual., 17: 304-309.

https://doi.org/10.2134/jeq1988.00472425001700020024x

Suresh, B. and Ravishankar, G. A. (2004). Phytoremediation - A novel and promising approach for environmental clean-up. Critical Review in Biotechnology, 24: 97-124.

https://doi.org/10.1080/07388550490493627

Urbano, G., Lopez, M., Aranda, P., Vidal- valverde, C., Tenorio, E., Porrs, J., (2000). The role of phytic acids in legumes: Anti-nutrient or beneficial function? J. Physiol. Biochem., 56 (3):

https://doi.org/10.1007/BF03179796

-294.

Wistreich, G. A. (1997). Microbiology Laboratory: Fundamentals and Applications. Prentice-Hall Inc. New Jersey, USA pp. 144-186, 194-259.

Downloads

Published

30-06-2019

How to Cite

Manga, S. S., Nwosu, C. O., Bazata, Y. A., & Isah, M. (2019). Assessment of the Phytoremediation Activity of the Rhizobacterial Flora of Arachis hypogaea (Groundnut) on Hydrocarbon Contaminated Soil. UMYU Journal of Microbiology Research (UJMR), 4(1), 26–33. https://doi.org/10.47430/ujmr.1941.005