The Role of TLR-4 on the Mapkinases Signaling Pathways of Inflammatory Responses against Recombinant BCG Malaria Vaccine Candidate

Authors

  • Muhammad Adamu Abbas Department of Human Physiology, Faculty of Basic Medical Sciences, Bayero University Kano, Nigeria
  • Rapeah Suppian School of Health Sciences; Health Campus; Universiti Sains Malaysia; Kelantan, Malaysia

DOI:

https://doi.org/10.47430/ujmr.1832.016

Keywords:

JNK1/2, ERK1/2, Macrophages, Malaria, MAPKinase, MSP, Recombinant BCG, TLR-4, Vaccine

Abstract

 

Malaria, a life-threatening disease caused by Plasmodium parasites which have developed resistance to all anti-malaria drugs on the background resistance of the mosquito vector to insecticides, necessitating more intense search for an effective vaccine. A recombinant BCG (rBCG) vaccine candidate expressing the merozoite surface protein 1C (MSP-1C) of Plasmodium falciparum was developed in our laboratory, which generated robust innate and adaptive immune responses that pointed to the likelihood of the role of Toll- like receptor-4 (TLR-4). This study analysed the role TLR-4 attachment of the rBCG to macrophages in eliciting the observed immune responses. Mice (n = 6 per group) were immunised with PBS-T80, parent BCG or rBCG in the presence or absence of a TLR-4 inhibitor; TAK-242 and the effects of TLR-4 on the expression of c-Jun N-terminal kinases 1 and 2 (JNK1/2) and extracellular signal–regulated kinases 1 and

2 (ERK1/2) which are involved in the signalling pathway were analysed through western blot on macrophages harvested from the mice peritoneum. The results obtained showed a significant increase in the expression of the MAPKinases in the group immunised with rBCG compared to BCG and PBS-T80 immunised groups. There was significant inhibition of the JNK1/2 and ERK1/2 expression in the presence of TAK-242 signifying, for the first time, the role of TLR-4 in the phosphorylation of both JNK1/2 and ERK1/2 in the immune response against the vaccine candidate expressing the MSP-1C of P. falciparum. This study highlighted the role of TLR-4 in the phosphorylation of ERK1/2 and JNK1/2 in the immune response against recombinant BCG malaria vaccine candidate

 

Downloads

Download data is not yet available.

References

Akira, S. and Takeda, K. (2004). Toll-like receptor signaling. Nature Reviews Immunology 4:499-511.

https://doi.org/10.1038/nri1391

András, Z., Mariya, M., Attila, R. and Marie, A. B. (2016). JNK Signaling: regulation and functions based on complex proteinprotein partnerships. Microbiology and Molecular Biology Reviews, 80(3):793- 835.

https://doi.org/10.1128/MMBR.00043-14

Aung, M. T., Aung, P. P., Jordi, L., Daniel, M. P. and Francois, H. N. (2017). Combating multidrug-resistant Plasmodium falciparum malaria. The FEBS Journal, 284:2569-2578.

https://doi.org/10.1111/febs.14127

Benjamin, B., Didier, L. and David, A. F. (2017).

Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nature, Medicine., 23(8):917, -, 928.

https://doi.org/10.1038/nm.4381

Bryant, C. E., Symmons, M. and Gay, N. J. (2015). Toll-like receptor signalling through macromolecular protein complexes. Molecular Immunology, 63(2):162-165.

https://doi.org/10.1016/j.molimm.2014.06.033

Cannon, G., Callahan, M. A., Gronemus, .Q. and Lowy, R. J. (2014). Early Activation of MAP Kinases by influenza A virus X-31 in murine macrophage cell lines. PLoS ONE, 9(8).

https://doi.org/10.1371/journal.pone.0105385

CDC (2017). Steven Glenn. Laboratory and consultation division.

CDC (2017b). Centre for Disease Control, December 20, 2017.

Chenghui, X., Jie, K, Matthew, E. F., Shanmugam, N., Thomas, M. B. and Xianli, W. (2011). Blueberries reduce pro-inflammatory cytokine TNF-a and IL- 6 production in mouse macrophages by inhibiting NF-jB activation and the MAPK pathway. Molecular Nutrition Food Research, 55(10):1587-1591.

https://doi.org/10.1002/mnfr.201100344

Cui, J., Chen, Y., Wang, H. Y. and Wang, R.-F. (2014). Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines and Immunotherapeutics, 10(11):3270-3285.

https://doi.org/10.4161/21645515.2014.979640

Daly, T. M. and Long, C. A (1993). A recombinant 15-kDa carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infection and Immunity, 61(6):2462-7.

https://doi.org/10.1128/iai.61.6.2462-2467.1993

den, Haan, J. M. and Kraal, G. (2012). Innate immune functions of macrophage subpopulations in the spleen. Journal of Innate Immunity, 4(5-6):437-445.

https://doi.org/10.1159/000335216

Dhaniah, M., Rapeah, S. and Norazmi, M. N. (2014). Immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum on LPS- or LPS+IFN-γ-stimulated J774A.1 cells. Human Vaccinine and Immunotherapeutics, 10(7):1880-1891.

https://doi.org/10.4161/hv.28695

Dodoo, D., Aikins, A., Kusi, K. A., Lamptey, H., Remarque, E., Milligan, P., Bosomprah, S., Chilengi, R., Osei, Y. D., Akanmori, B.D. and Theisen, M. (2008). Cohort study of the association of antibody levels to AMA1 MSP119 MSP3 and GLURP with protection from clinical malaria in Ghanaian children. Malaria Journal, 7:142.

https://doi.org/10.1186/1475-2875-7-142

Gowda, N. M. Wu, X. and Gowda, D. C. (2011). The Nucleosome (Histone-DNA Complex) is the TLR9-specific immunostimulatory component of Plasmodium falciparum that activates DCs. PLoS ONE, 6(6): e20398.

https://doi.org/10.1371/journal.pone.0020398

Hirunpetcharat, C., Tian, J. H., Kaslow, D. C., van, Rooijen, N., Kumar, S., Berzofsky, J. A., Miller, L. H. and Good, M. F. (1997). Complete protective immunity induced in mice by immunization with the 19- kilodalton carboxyl-terminal fragment of the merozoite surface protein-1 (MSP1[19]) of Plasmodium yoelii expressed in Saccharomyces cerevisiae: correlation of protection with antigen- specific antibody titer, but not with effector CD4z T cells. Journal of Immunology, 159(7):3400-3411.

https://doi.org/10.4049/jimmunol.159.7.3400

Hongjun, P., Mei, S., Li, Z., Yuanyuan, L., Jing, S., Lirong, Z., Xiaohui, W., Xiaopeng, X., Xiaolei, Z., Yijie, M., Yun, J., Jingting, J. and Weifeng, S. (2014). Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiology14:147.

https://doi.org/10.1186/1471-2180-14-147

Hugues, C., Amélie, C. G., Charles, P. and Yves,S. (2007). LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1dependent mechanisms. Respiratory Research 8:71.

https://doi.org/10.1186/1465-9921-8-71

Hussey, S. E., Liang, H., Costford, S. R., Klip, A., DeFronzo, R., A., Sanchez-Avila, A., Ely, B. and Musi, N. (2013). Transforming growth factor-β-activated kinase-242, a small-molecule inhibitor of Toll-like receptor 4 signaling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Bioscience Reports. 33(1):37-47.

https://doi.org/10.1042/BSR20120098

Jianzhong, Z., Gowdahalli, K. D. and Channe,G. (2005). Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols (GPIs) of Plasmodiu falciparum: the requirement of ERK, p38, JNK and NFκB pathways for the expression of proinflammatory cytokines and nitric oxide. Journal of Biological Chemistry, 280(9):8617-8627.

https://doi.org/10.1074/jbc.M413539200

Joanna, G. and Elizabeth, J. K. (2005). In vivo ethanol exposure down-regulates TLR2, TLR4- andTLR9-mediated macrophage inflammatory response by limiting p38 and ERK1/2 activation. The Journal of Immunology, 174(1):456-463.

https://doi.org/10.4049/jimmunol.174.1.456

Kaiser, F., Cook, D., Papoutsopoulou, S., Rajsbaum, R., Wu, X., Yang, H.-T. and O'Garra, A. (2009). TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells. The Journal of Experimental Medicine, 206(9):1863-1871.

https://doi.org/10.1084/jem.20091059

Kelsey, V., Moushimi, A., Claudius, M., Brian, R., Kylene, K., Charles, B., Emanuel, P. and Aarthi, N. (2014). Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells. Virology, 468-470:490-503.

https://doi.org/10.1016/j.virol.2014.09.005

Knobloch, J., Chikosi, S. J., Yanik, S., Rupp, J., Jungck, D. and Koch, A. (2016). A systemic defect in toll-like receptor 4 signaling increases lipopolysaccharideinduced suppression of IL-2-dependent T-cell proliferation in COPD. American Journal of Physiology- Lung Cellular and Molecular Physiology, 310:24-39.

https://doi.org/10.1152/ajplung.00367.2014

Krishnegowda, G., Hajjar, A. M., Zhu, J., Douglass, E. J., Uematsu, S., Akira, S., Amina, S. W. and Gowda, D. C. (2005). Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: cell signaling receptors, GPI structural requirement and regulation of GPI activity. The Journal of Biological Chemistry, 280(9):8606-8616.

https://doi.org/10.1074/jbc.M413541200

Kumar, H., Kawai, T. and Akira, S. (2011). Pathogen recognition by the innate immune system. Int Rev Immunol.30(1):16-34.

https://doi.org/10.3109/08830185.2010.529976

Li, M., Matsunaga, N., Hazeki, K., Nakamura, K., Takashima, K., Seya, T., Hazeki, O., Kitazaki, T. and Iizawa, Y. (2006). A novel cyclohexene derivative, ethyl (6R)-6-[N(2-Chloro-4-fluorophenyl) sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-2420) selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol, 69(4):1288-1295.

https://doi.org/10.1124/mol.105.019695

Li, W., Zhongwu, Z., Jing, W. and Jue, L. (2009). NK and p38 mitogen-activated protein kinase pathways contribute to Porcine Circovirus Type 2 Infection.Journal of Virology, 83(12):6039-6047.

https://doi.org/10.1128/JVI.00135-09

Liang, H., Hussey, S. E., Sanchez-Avila, A., Tantiwong, P. and Musi, N. (2013). Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE, 8(5): e63983.

https://doi.org/10.1371/journal.pone.0063983

Lim, M. X., Png, C. W., Tay, C. Y., B., Teo, J.D., W., Jiao, H., Lehming, N., Tan, K. SW. and Zhang, Y. (2014). Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection. Infection and Immunity, 82(11):4789-4801.

https://doi.org/10.1128/IAI.02279-14

Markus, R., Nathalie, D. and Manfred, H. W. (2004). Replication of Varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation. Journal of General Virology, 85:3529-3540.

https://doi.org/10.1099/vir.0.80347-0

Masayuki, I., Naoko, M., Kaoru, H., Kazuyo, N., Katsunori, T., Tsukasa, S., Osamu, H., Tomoyuki, K. I. and Yuji, I. (2006). Novel cyclohexene derivative, Ethyl

(6R)-6-[N-(2-Chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1carboxylate (TAK-2420) selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Molecular Pharmacology, 69(4):12881295.

Matsuguchi, T., Masuda, A., Sugimoto, K., Nagai,Y. and Yoshikai, Y. (2003). JNKinteracting, protein, 3, associates, with, Toll-like, receptor, 4 and is, involved, in, LPS-mediated, JNK, activation., The, EMBO, Journal, 22(17):4455-4464.

https://doi.org/10.1093/emboj/cdg438

Matsunaga, N., Tsuchimori, N., Matsumoto, T. and Li, M. (2011). TAK-242 (resatorvid0). a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology, 79(1):34-41.

https://doi.org/10.1124/mol.110.068064

McCall, M. B., Netea, M. G., Hermsen, C. C., Jansen, T., Jacobs, L., Douglas, G., Andre', J. A. M., v. and Robert, W. S. (2007). Plasmodium falciparum infectioncauses proinflammatory priming of human TLR responses. The Journal of Immunology,179(1):162171.

https://doi.org/10.4049/jimmunol.179.1.162

Medzhitov, R. (2001). Toll-like receptors and innate immunity.Nature Reviews Immunology,1(2):135-145.

https://doi.org/10.1038/35100529

Medzhitov, R. and Janeway, C. Jr. (2002). innate immune recognition. Annual Review of Immunology, 20:197-216.

https://doi.org/10.1146/annurev.immunol.20.083001.084359

Muzio, M., Natoli, G., Saccani, S., Levrero, M. and Mantovani, A. (1998). The human toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). The Journal of Experimental Medicine, 187(12):2097-2101.

https://doi.org/10.1084/jem.187.12.2097

Naga, S. A., Ryosuke, Y., Matthew, P., Olumide,A. and Harry, K. W. K. (2016).Necrotic bone stimulates proinflammatory responses in macrophages through the activation of toll-like receptor 4. The American Journal of Pathology, 186(11):29872999.

https://doi.org/10.1016/j.ajpath.2016.06.024

Natarajan, K., Kundu, M., Sharma, P. and Basu, J. (2011). Innate immune responses to M. tuberculosis infection. Tuberculosis,91(5):427-31.

https://doi.org/10.1016/j.tube.2011.04.003

Norazmi, M. N. and Dale, J. W. (1997). Cloning and expression of a candidate malarial epitope in bacille Calmette Guerin. Biotechnology Letters, 19(11):11351137.

https://doi.org/10.1023/A:1018405013737

Nurul, A. A. and Norazmi, M. N. (2011). Immunogenicity and in vitro protective efficacy of recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa merozoite surface protein-1 (MSP-1(19)) antigen of Plasmodium falciparum. Parasitology Research, 108(4):887-897.

https://doi.org/10.1007/s00436-010-2130-5

PATH-MVI (2011). The PATH malaria vaccine initiative. 2011.

Peng, S., Shun-Zong, S., Shuang, J., Xia, L., You-Li, Y., Yan-Ling, W., Li-Hua, L. and Ji- Xing, N. (2016). Salidroside regulates inflammatory response in Raw 264.7 macrophages via TLR4/TAK1 and ameliorates inflammation in alcohol binge drinking-induced liver injury. Molecules, 21(11):1490.

https://doi.org/10.3390/molecules21111490

Pia, B., Pedro, A., Raúl, V., Claudio, H., Felipe,T. C., Claudia, M., Lorena, G., Marcela,A. H. and Guillermo, D. (2016). Expression and function of toll-like receptor 4 and inflammasomes in cardiac fibroblasts and myofibroblasts:IL-1 synthesis, secretion and degradation.Molecular Immunology, 74:96-105.

https://doi.org/10.1016/j.molimm.2016.05.001

Rapeah, S., Dhaniah, M., Nurul, A. A. and Norazmi, M. N. (2010). Phagocytic activity and pro-inflammatory cytokines production by the murine macrophage cell line J774A.1 stimulated by a recombinant BCG (rBCG) expressing the MSP1-C of Plasmodium falciparum. Tropical Biomedicine, 27(3):461-469.

Ray, A. and Dittel, B. N. (2010). Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments (35):1488.

https://doi.org/10.3791/1488-v

Ropert, C., Almeida, I. C., Closel, M., Travassos,L. R., Ferguson, M. A., Cohen, P. and Gazzinelli, R.T. (2001). Requirement of mitogen-activated protein kinases and I kappa B phosphorylation for induction of proinflammatory cytokines synthesis by macrophages indicates functional similarity of receptors triggered by glycosyl -phosphatidylinositol anchors from parasitic protozoa and bacterial lipopolysaccharide. The Journal of Immunology, 166(5):3423-3431.

https://doi.org/10.4049/jimmunol.166.5.3423

Roskoski, R., Jr. (2012). ERK1/2 MAP kinases: structure, function and regulation. Pharmacological Research, 66(2):105143.

https://doi.org/10.1016/j.phrs.2012.04.005

Rossana, T., Palanisamy, K. and Bice, P. (1996). Fc gamma R-dependent mitogenactivated protein kinase activation in leukocytes: a common signal transduction event necessary for expression of TNF-alpha and early activation genes. The Journal of Experimental Medicine, 184(3):1027-1035.

https://doi.org/10.1084/jem.184.3.1027

Ruhcha, V. S., Iain, R. P., Rebecca, B., Alison, M., Natalia, S., Stuart, L., Andrew, W. and Simon, C. A. J. (2018). Differential control of toll-like receptor 4 -induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. Journal of Biological Chemistry, 293(7):2302-2317.

https://doi.org/10.1074/jbc.M117.805424

Shin-ichi, Y., Tamaki, O., Michael, R., Nobuhiro,F. and Ken-ichi, A. (2010). Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen- activated protein kinase pathway. Infection and Immunity, 78(1):468-476.

https://doi.org/10.1128/IAI.00903-09

Sohkichi, M., Hideharu, Y., Hiroji, K. and Takeshi, Y. (1998). Recombinant mycobacterium bovis bacillus calmetteguérin secreting merozoite surface protein 1 (MSP1) induces protection against rodent malaria parasite infection depending on MSP1-stimulated interferon γ and parasite-specific antibodies. Journal of Experimental Medicine, 188(5):845-854.

https://doi.org/10.1084/jem.188.5.845

Takashima, K., Matsunaga, N., Yoshimatsu, M., Hazeki, K., Kaisho, T., Uekata, M., Hazeki, O., Akira, S., Iizawa, Y. and Li,M. (2009). Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. British Journal of Pharmacology, 157(7):1250-62.

https://doi.org/10.1111/j.1476-5381.2009.00297.x

Weifeng, S., Xueling, H., Xiang, L., Hongjun, P., Mei, S., Qingbo, J., Xiping, L., Yun,J., Yuhua, Y., Caizhen, H. and Xiangdong, L. (2013). Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. The Brazilian Journal of Infectious Diseases, 17(4):410-417.

https://doi.org/10.1016/j.bjid.2012.11.009

White, N. J. (2004). Antimalarial drug resistance. Journal of Clinical Investigation, 113(8):1084-1092.

https://doi.org/10.1172/JCI21682

WHO (2016). Maternal and child health (MCH).Epidemiology and estimation group.

WHO (2017). Malaria Fact, sheet Updated, November, 2017

Yao, L., Kan, E. M., Lu, J., Hao, A., Dheen, S.T., Kaur, C. and Ling, E. A. (2013). Toll- like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. Journal of Neuroinflammation, 10:23.

https://doi.org/10.1186/1742-2094-10-23

Yonglin, Z., Yahui, Z., Ming, Z., Junjie, Z., Xudong, M., Tingqin, H., Honggang, P., Jiaxi, L. and Jinning, S. (2016). Inhibition of TLR4 signaling-induced inflammation attenuates secondary injury after diffuse axonal injury in rats. Mediators of Inflammation, Article ID 4706915.

https://doi.org/10.1155/2016/4706915

Youngnam, K. and Changhee, L. (2005).Extracellular signal-regulated kinase (ERK) activation is required for porcine epidemic diarrhea virus replication. Virology, 484:181-193.

https://doi.org/10.1016/j.virol.2015.06.007

Yury, I. M., Suganya, V., Dorothy, S. W., Agne's, B., Susan, B. and Joseph, L. W. (2005). Toll- like receptor 4 -dependent and - independent cytokine secretion induced by minimally oxidized lowdensity lipoprotein in macrophages. Arteriosclerosis, Thrombosis and Vascular Biology, 25(6):1213-1219.

https://doi.org/10.1161/01.ATV.0000159891.73193.31

Downloads

Published

30-12-2018

How to Cite

Muhammad Adamu Abbas, & Rapeah Suppian. (2018). The Role of TLR-4 on the Mapkinases Signaling Pathways of Inflammatory Responses against Recombinant BCG Malaria Vaccine Candidate. UMYU Journal of Microbiology Research (UJMR), 3(2), 105–115. https://doi.org/10.47430/ujmr.1832.016