Growth Kinetics Modelling of Tributytin-Resistant Klebsiella SP. FIRD 2 In Cadmium Media

Authors

  • Abdussamad Abubakar Department of Microbiology, Faculty of Science, Bauchi State University, PMB 65, Itas Gadau Bauchi, Nigeria
  • Nazeef Idris Usman Department of Microbiology, Faculty of Science, Bauchi State University, PMB 65, Itas Gadau Bauchi, Nigeria
  • Hadiza Ibrahim School of Dental Health Technology, Shehu Idris College of Health Science and Technology P.M.B 1050 Makarfi, Kaduna State, Nigeria
  • Abdullahi Muhammad Center For Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria
  • Usman Sunusi Department of Biochemistry, Faculty of Basic Medical Science, Bayero University, PMB 3011 Kano, Nigeria
  • Ferdaus Mohamat-yusuff Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Salihu Ibrahim Center For Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria

DOI:

https://doi.org/10.47430/ujmr.1721.023

Keywords:

Cadmium, Growth, Kinetics models, Klebsiellasp, FIRD 2, Luong, TBT-resistant bacteria

Abstract

Tributyltin (TBT) has been generally used as component of antifouling biocide in boat and ship paints to prevent the attachment of marine organism on the hull surface. TBT has been classified to be a very toxic compound, and poses significant danger to a broad diversity of organisms in the polluted environments due to the high concentrations. The growth kinetic of TBT-Resistant Bacterium containing cadmium was studied. In this study various cadmium concentrations ranging from 1 to 100 mg/L were used. Seven kinetic models (Haldane, Teissier, Monod, Yano, Luong, Aiba and Webb) were investigatedand the accuracy of the fitted model were evaluated using statistical analysis such as coefficient of determination, adjusted coefficient of determination (R2) and root mean square (RMSE). Luong model were fitted to the experimental growth kinetics data and gave a very good fit. The calculated value for the Luong constants such as maximal growth rate, half saturation constant and half inhibition constant rate symbolized by umax, ks, and ki, were 0.03405 hr-1, 0.3 mg/L and 0 mg/L, respectively. Luong model also predicted the significant substrate concentration (Sm) value, at which specific substrate degradation rate falls to zero (98.93 mg/L). This is the first report of growth kinetics of TBT-Resistant bacterium by Klebsiella sp. FIRD 2 Containing Cadmium

Downloads

Download data is not yet available.

References

Abubakar, A., Mustafa, M. B., Wan Johari, W. L., Zahmir, S., Ismail, A., and Mohamat- yusuff, F. B. (2015). Klebsiella sp . FIRD 2, a TBT-resistant bacterium isolated from contaminated surface sediment along Strait of Johor Malaysia. Marine Pollution Bulletin, 101, 280-283. doi:10.1016/j.marpolbul.2015.09.041

https://doi.org/10.1016/j.marpolbul.2015.09.041

Agarwal, R., Mahanty, B., and Dasu, V. V. (2009). Modeling Growth of Cellulomonas cellulans NRRL B 4567 under Substrate Inhibition During Cellulase Production. Chemical and Biochemical Engineering Quarterly, 23(2), 213-218.

Ahmad, S. A., Ibrahim, S., Shukor, M. Y.,Johari, W. L. W. J., Rahman, N. A., and Syed, M. A. S. (2015). Biodegradation kinetics of caffeine by Leifsonia sp. strain SIU. Journal of Chemical and Pharmaceutical Sciences, 8(2), 312-316.

Aiba, S., Shoda, M., and Nagalani, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10(6), 845-864.

https://doi.org/10.1002/bit.260100610

Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environmental International, 34(2), 292-308.

https://doi.org/10.1016/j.envint.2007.09.005

Bangkedphol, S., Keenan, H. E., Davidson, C., Sakultantimetha, A., & A. Songsasen. (2009). The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere, 77, 1326-1332.

https://doi.org/10.1016/j.chemosphere.2009.09.046

Barroso, C. M., Moreira, M. H., and Gibbs, P. E. (2000). Comparison of imposex and intersex development in four prosobranch species for TBT monitoring of a southern European estuarine system (Ria de Aveiro, NW Portugal). Marine Ecology Progress

https://doi.org/10.3354/meps201221

Blackmore, G., and Morton, B. (2001). The interpretation of body trace metal concentrations in neogastropods from Hong Kong. Marine Pollution Bulletin, 42, 1161-1168.

https://doi.org/10.1016/S0025-326X(01)00132-1

Bruins, M. R., Kapil, S., and Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198-207.

https://doi.org/10.1006/eesa.1999.1860

Chen, Y., Cohen, M. D., Snow, E. T., and Costa,M. (1991). Alteration in restriction enzyme digestion patterns detects DNA-protein complexes induced by chromate. Carcinogenesis, 12(9), 1575-80.

https://doi.org/10.1093/carcin/12.9.1575

Cooney, J. J., and Wuertz, S. (1989). Toxic effects of tin-compounds on microorganisms. Journal of Industrial Microbiology, 5(5), 375-402.

https://doi.org/10.1007/BF01569539

Cruz, A., Caetano, T., Suzuki, S., and Mendo, S. (2007). Aeromonas veronii , a tributyltin ( TBT ) -degrading bacterium isolated from an estuarine environment , Ria de Aveiro in Portugal. Marine Environmental Research, 64, 639-650. doi:10.1016/j.marenvres.2007.06.006

https://doi.org/10.1016/j.marenvres.2007.06.006

Cruz, A., Oliveira, V., Baptista, I., Almeida, A., Cunha, A., Suzuki, S., and Mendo, S. (2012). Effect of tributyltin (TBT) in the metabolic activity of TBT- resistant and sensitive estuarine bacteria. Environ Toxicol 27(1): Environmental Toxicology, 27(1), 11-17.

https://doi.org/10.1002/tox.20605

Du, J., Chadalavada, S., Chen, Z., and Naidu,R. (2014). Environmental remediation techniques of tributyltin contamination in soil and water : A review. Chemical Engineering Journal, 235, 141-150. doi:10.1016/j.cej.2013.09.044

https://doi.org/10.1016/j.cej.2013.09.044

Dubey, S. K., Tokashiki, T., and Suzuki, S. (2006). Microarray-mediated transcriptome analysis of the tributyltin (TBT)-resistant bacterium Pseudomonas aeruginosa 25W in the presence of TBT.Series, 201, 221-232.

Gadd, G. M. (1990). In Microbial Mineral Recovery (Ehrlich, HL and Brierley, CL., Eds.), McGraw-Hill, New York.

Gibbs, P., and Bryan, G. (1996). TBT-induced imposex in neogastropod snails: masculinization to mass extinction. In: SJ M (ed) Tributyltin: case study of an environmental contaminant, vol 8. Cambridge Environmental Chemistry. Cambridge University Press, Cambridge, (pp. 212-236).

https://doi.org/10.1017/CBO9780511759772.008

Giller, K., Witter, E., and McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389-1414.

https://doi.org/10.1016/S0038-0717(97)00270-8

Gluszcz, P., Petera, J., and Ledakowicz, S. (2011). Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor. Bioprocess Biosystem Engineering, 34(3), 275-285.

https://doi.org/10.1007/s00449-010-0469-8

Gokulakrishnan, S., and Gummadi, S. N. (2006). Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182. Process Biochemistry, 41(6), 1417-1421. doi:10.1016/j.procbio.2005.12.018

https://doi.org/10.1016/j.procbio.2005.12.018

Haldane, J. B. S. (1930). Enzymes, London, Longmans, Green.

Halmi, M. I. E., Shukor, M. S., Wan Johari, W. L., and Shukor, M. Y. (2014). Mathematical Modeling of the Growth Kinetics of Bacillus sp. on Tannery Effluent Containing Chromate. Journal of Environmental Bioremediation and Toxicology, 2(1), 6-10.

https://doi.org/10.54987/jebat.v2i1.139

Hamitouche, A. E., Bendjama, Z., Amrane, A., Kaouah, F., and Hamane, D. (2012). Relevance of the Luong model to describe the biodegradation of phenol by mixed culture in a batch reactor. Annals of Microbiology, 62(2), 581-6.

https://doi.org/10.1007/s13213-011-0294-6

Harino, H., Arai, T., Ohji, M., Ismail, A., and Miyazaki, N. (2008). Organotin contaminations in Malaysia. Coastal Marine Science, 32(1), 96-101.

Ibrahim, S., Shukor, M. Y., Syed, M. A., Wan

Johari, W. L., and Ahmad, S. A. (2015a). Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Annals of Microbiology, 1-10. doi:10.1007/s13213- 015-1108-z

Ibrahim, S., Muhammad, A., Tanko, A. S., Abubakar, A., Ibrahim, H., Shukor, M. Y., and Ahmad, S. A. (2015b). Studies of Action of Heavy Metals On Caffeine degradation by Immobilised Leifsonia sp. strain SIU. Bayero Journal of Pure and Applied Sciences, 8(2), 138-144.

https://doi.org/10.4314/bajopas.v8i2.24

Jude, F., Arpin, C., Brachet-Castang, C., Capdepuy, M., Caumette, P., and Quentin,C. (2004). TbtABM, a multidrug efflux pump associated withtributyltin resistance in Pseudomonas stutzeri. FEMS Microbiology Letters, 232(1), 7-14.

https://doi.org/10.1016/S0378-1097(04)00012-6

Luong, J. H. T. (1987). Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnology and Bioengineering, 29(2), 242-248.

https://doi.org/10.1002/bit.260290215

Monod, J. (1949). The growth of bacterial cultures. Annual Reviews in Microbiology, 3, 371-394.

https://doi.org/10.1146/annurev.mi.03.100149.002103

Mulchandani, A., Luong, J. H. T., and Groom,C. (1989). Substrate inhibition kinetics for microbial growth and synthesis of poly-β- hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Applied Microbiology and Biotechnology, 30(1), 11-17.

https://doi.org/10.1007/BF00255990

Nath, S., Deb, B., and Sharma, I. (2012). Isolation and Characterization of Cadmium and Lead Resistant Bacteria. Global Advanced Research Journal of Microbiology, 1(11), 194-198.

Nickzad, A., Mogharei, A., Monazzami, A., Jamshidian, H., and Vahabzadeh, F. (2012). Biodegradation of phenol by Ralstonia eutropha in a Kissiris- immobilized cell bioreactor. Water Environmental Research, 84(8), 626-34.

https://doi.org/10.2175/106143012X13373550427075

Othman, A. R., Bakar, N. A., Halmi, M. I. E., Johari, W. L. W., Ahmad, S. A., Jirangon, H., … Shukor, M. Y. (2013). Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Research International, 2013, 1-9. doi:10.1155/2013/371058

https://doi.org/10.1155/2013/371058

Poole, R. K., and Gadd, G. M. (1989). Metals: Microbe Interactions, IRL Press, Oxford.

Roane, T. M., and Pepper, I. L. (2000). Microbial responses to environmentally toxic cadmium". Microbial Ecology, 38, 358-364.

https://doi.org/10.1007/s002489901001

Rudel, H., Lepper, P., &and Steinhanses, J. (2003). Retrospective monitoring of organotin compounds in marine biota from 1985 to 1999: results from German environmental specimen bank. Environmental Science and Technology, 37, 1731-1738.

https://doi.org/10.1021/es026059i

Sahinkaya, E., and Dilek, F. B. (2007). Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed- effect of 2,4-DCP presence on 4-CP degradation kinetics. Biodegradation, 18(4), 427-37.

https://doi.org/10.1007/s10532-006-9077-3

Singh, A. P., and Bragg, P. D. (1979). Action of tributyltin chloride on the uptake of proline and glutamine by intact-cells of Escherichia coli. Can J Biochem. Canadian Journal of Biochemistry, 57(12), 1376-1383.

https://doi.org/10.1139/o79-183

Singh, K. R., Kumar, S., Kumar, S., and Kumar,A. (2008). Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal, 40, 293-303.doi:10.1016/j.bej.2007.12.015

https://doi.org/10.1016/j.bej.2007.12.015

Soda, S. O., Yamamura, S., Zhou, H., Ike, M., and Fujita, M. (2006). Reduction kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1. Biotechnology and Bioengineering, 93(4), 812-815.

https://doi.org/10.1002/bit.20646

Sukumar, M. (2010). Reduction of hexavalent chromium by Rhizopus Oryzae. African Journal of Environmental Science and Technology, 4(7), 412-418.

Teissier, G. (1942). Croissance des populations bacte'riennes et quantite'd'aliment disponible (Growth of bacterial populations and the available substrate concentration). Revision Science, 80, 209.

Wayman, M., and Tseng, M. C. (1976). Inhibition threshold substrate concentrations. Biotechnology and Bioengineering, 18(3), 383-387.

https://doi.org/10.1002/bit.260180308

Yano, T., Nakahara, T., Kamiyama, S., and Yamada, K. (1966). Kinetic studies on microbial activities in concentrated solutions. I . Effect of excess sugars on oxygen uptake rate of a cell-free respiratory system. Agricultural and Biological Chemistry, 30, 42-48.

https://doi.org/10.1271/bbb1961.30.42

https://doi.org/10.1080/00021369.1966.10858549

Downloads

Published

30-06-2017

How to Cite

Abdussamad Abubakar, Nazeef Idris Usman, Hadiza Ibrahim, Abdullahi Muhammad, Usman Sunusi, Ferdaus Mohamat-yusuff, & Salihu Ibrahim. (2017). Growth Kinetics Modelling of Tributytin-Resistant Klebsiella SP. FIRD 2 In Cadmium Media. UMYU Journal of Microbiology Research (UJMR), 2(1), 157–165. https://doi.org/10.47430/ujmr.1721.023