Abdussamad Abubakar1, Abdullahi Muhammad2, Dayyabu Shehu3, Murtala Ya’u3, Abba Babandi3, Abubakar Sadiq Tanko4, Ferdaus Mohamat-yusuff5, Hadiza Ibrahim6 and Salihu Ibrahim2*

Authors

  • Abdussamad Abubakar Department of Microbiology, Faculty of Science, Bauchi State University, PMB 65, Itas Gadau Bauchi, Nigeria
  • Abdullahi Muhammad Center for Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria
  • Dayyabu Shehu Department of Biochemistry, Faculty of Basic Medical Science, Bayero University, PMB 3011 Kano, Nigeria
  • Murtala Ya’u Department of Biochemistry, Faculty of Basic Medical Science, Bayero University, PMB 3011 Kano, Nigeria
  • Abba Babandi Department of Biochemistry, Faculty of Basic Medical Science, Bayero University, PMB 3011 Kano, Nigeria
  • Abubakar Sadiq Tanko Department of Biochemistry, Faculty of Science, Bauchi State University, PMB 65, Itas Gadau Bauchi, Nigeria
  • Ferdaus Mohamat-yusuff Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Hadiza Ibrahim School of Dental Health Technology, Shehu Idirs College of Health Science and Technology P.M.B 1050 Makarfi, Kaduna State
  • Salihu Ibrahim Center for Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria

DOI:

https://doi.org/10.47430/ujmr.1721.028

Keywords:

Growth Kinetic models, Klebsiella sp, FIRD 2, Copper, TBT-resistant bacteria.

Abstract

Tributyltin (TBT) is one of the most toxic substances ever deliberately introduced into the marine environment. It is an organotin compound mostly used as wood preservative, pesticide, bactericide, PVC stabilizer, fungicide, antifouling biocide in boat and ships paints to prevents attachments of the marine organism on the hull surface.We studied the TBT-Resistant Bacterium by Klebsiella sp. FIRD 2 containing copper II ion and modelled it using several kinetic models such as Monod, Haldane, Luong, Aiba, Teissier, Yano, and Webb and estimated the accuracy of the fitted model using statistical analysis such as coefficient of determination (R2), adjusted coefficient of determination (adj R2), and root mean square (RMSE). Aiba model was the best model to the experimental growth kinetics data determined and gave a very good fit. The estimated value for the Aiba constants in this work such as maximal growth rate, half inhibition constant, and half saturation constant rate designated asumax, ki andks were 0.1265 hr-1, 8.061 mg/Land 0.8300 mg/L respectively. The true umax where the gradient for the slope is zero for the Aiba model was approximately 0.061093 hr-1 at 1 mg/Lcopper.

 

Downloads

Download data is not yet available.

References

Abubakar, A., Mustafa, M. B., Wan Johari, W. L., Zahmir, S., Ismail, A., and Mohamat- yusuff, F. B. (2015). Klebsiella sp . FIRD 2

, a TBT-resistant bacterium isolated from contaminated surface sediment along Strait of Johor Malaysia. Marine Pollution Bulletin, 101, 280-283. doi:10.1016/j.marpolbul.2015.09.041

https://doi.org/10.1016/j.marpolbul.2015.09.041

Agarwal, R., Mahanty, B., and Dasu, V. V. (2009). Modeling Growth of Cellulomonas cellulans NRRL B 4567 under Substrate Inhibition During Cellulase Production. Chemical and Biochemical EngineeringQuarterly, 23(2), 213-218.

Ahmad, S. A., Ibrahim, S., Shukor, M. Y.,Johari, W. L. W. J., Rahman, N. A., and Syed, M. A. S. (2015). Biodegradation kinetics of caffeine by Leifsonia sp. strain SIU. Journal of Chemical and Pharmaceutical Sciences, 8(2), 312-316.

Aiba, S., Shoda, M., and Nagalani, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10(6), 845-864.

https://doi.org/10.1002/bit.260100610

Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environmental International, 34(2), 292-308.

https://doi.org/10.1016/j.envint.2007.09.005

Barroso, C. M., Moreira, M. H., and Gibbs, P. E. (2000). Comparison of imposex and intersex development in four prosobranch species for TBT monitoring of a southern European estuarine system (Ria de Aveiro, NW Portugal). Marine Ecology Progress Series, 201, 221-232.

https://doi.org/10.3354/meps201221

Bruins, M. R., Kapil, S., and Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198-207.

https://doi.org/10.1006/eesa.1999.1860

Causton, D. R. (1977). A Biologist's Mathematics. Arnold. London.

Cooney, J. J., and Wuertz, S. (1989). Toxic effects of tin-compounds on microorganisms. Journal of Industrial Microbiology, 5(5), 375-402.

https://doi.org/10.1007/BF01569539

Cruz, A., Henriques, I., Sousa, A. C. A., Baptista, I., Almeida, A., Takahashu, S., … Mendo, S. (2014). A microcosm approach to evaluate the degradation of tributyltin ( TBT ) by Aeromonas molluscorum Av27 in estuarine sediments. Environmental Research, 132, 430-437. doi:10.1016/j.envres.2014.04.031

https://doi.org/10.1016/j.envres.2014.04.031

Cruz, A., Oliveira, V., Baptista, I., Almeida, A., Cunha, A., Suzuki, S., and Mendo, S. (2012). Effect of tributyltin (TBT) in the metabolic activity of TBT- resistant and sensitive estuarine bacteria. Environ Toxicol 27(1): Environmental Toxicology, 27(1), 11-17.

https://doi.org/10.1002/tox.20605

Dey, S., and Mukherjee, S. (2010). Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor. International Journal of Water Resources and Environmental Engineering, 2(3), 40-49.

Dubey, S. K., Tokashiki, T., and Suzuki, S. (2006). Microarray-mediated transcriptome analysis of the tributyltin (TBT)-resistant bacterium Pseudomonas aeruginosa 25W in the presence of TBT. Journal of Microbiology, 44(2), 200-205.

Evans, S. M., & et al. (2000). The TBT ban: out of the frying pan into the fire? Marine Pollution Bulletin, 40, 204-211.

https://doi.org/10.1016/S0025-326X(99)00248-9

Gibbs, P., and Bryan, G. (1996). TBT-induced imposex in neogastropod snails: masculinization to mass extinction. In: SJ M (ed) Tributyltin: case study of an environmental contaminant, vol 8. Cambridge Environmental Chemistry. Cambridge University Press, Cambridge,

https://doi.org/10.1017/CBO9780511759772.008

Gokulakrishnan, S., and Gummadi, S. N. (2006). Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182. Process Biochemistry, 41(6), 1417-1421. doi:10.1016/j.procbio.2005.12.018

https://doi.org/10.1016/j.procbio.2005.12.018

Gompertz, B. (1825). On the nature of the function expressiveness of the law of human mortality, and a new mode of determining the value of life contingencies. Philos. Trans.R. Soc. Lond., 115, 513 - 585.

https://doi.org/10.1098/rstl.1825.0026

Haldane, J. B. S. (1930). Enzymes, London, Longmans, Green.

Halmi, M. I. E., Shukor, M. S., Wan Johari, W. L., and Shukor, M. Y. (2014). Mathematical Modeling of the Growth Kinetics of Bacillus sp. on Tannery Effluent Containing Chromate. Journal of Environmental Bioremediation and Toxicology, 2(1), 6-10.

https://doi.org/10.54987/jebat.v2i1.139

Harino, H., Arai, T., Ohji, M., Ismail, A., and Miyazaki, N. (2008). Organotin contaminations in Malaysia. Coastal Marine Science, 32(1), 96-101.

Hoch, M. (2001). Organotin compounds in the environment - an overview. Applied Geochemistry, 16(16), 719-743.

https://doi.org/10.1016/S0883-2927(00)00067-6

Hu, J., Zhen, H., Wan, Y., Gao, J., An, W., An,L., … Jin, X. (2006). Trophic magnification of triphenyltin in a marine food web of Bohai Bay, north China:comparison to tributyltin. Environmental Science and Technology, 40, 3142-3147.

https://doi.org/10.1021/es0514747

Ibrahim, S., Shukor, M. Y., Syed, M. A., Wan

Johari, W. L., and Ahmad, S. A. (2015). Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Annals of Microbiology, 1-10. doi:10.1007/s13213- 015-1108-z

Jude, F., Arpin, C., Brachet-Castang, C., Capdepuy, M., Caumette, P., and Quentin, C. (2004). TbtABM, a multidrug efflux pump associated withtributyltin resistance in Pseudomonas stutzeri. FEMS Microbiology Letters, 232(1), 7-14.

https://doi.org/10.1016/S0378-1097(04)00012-6

Luong, J. H. T. (1987). Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnology and Bioengineering, 29(2), 242-248.

https://doi.org/10.1002/bit.260290215

Mendo, S. A., Nogueira, P. R., Ferreira, S. C. N., and Silva, R. G. (2003). Tributyltin and triphenyltin toxicity on benthic estuarine bacteria. Fresenius Environmental Bulletin, 12(11), 1361-1367.

Mohamat-yusuff, F., Sien, K. I. T. W. U. I.,Lutfi, W. A. N., Johari, W. A. N., Ismail,A., Zahmir, S., and Mustafa, M. (2014). Potential tributyl-tin (TBT) biodegradation agent in contaminated sediment. (pp. 212-236). Malaysian Nature Journal, 66, 81-93.

Monod, J. (1949). The growth of bacterial cultures. Annual Reviews in Microbiology, 3, 371-394.

https://doi.org/10.1146/annurev.mi.03.100149.002103

Montuelle, B., Latour, X., and Volat, B. et al. (1994). Toxicity of heavy metals to bacteria in sediments. Bull Environ Contam Toxicol. Bulletin of Environmental Contamination and Toxicology, 53, 753-775.

https://doi.org/10.1007/BF00196950

Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730-750.

https://doi.org/10.1007/s002530051457

Okpokwasili, G. C., and Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5(4), 305-317.

Roane, T. M., Josephson, K. L., and Pepper, I.L. (2001). Microbial cadmium detoxification allows remediation of co- contaminated soil. Applied Environmental Microbiology, 67, 3208-3215.

https://doi.org/10.1128/AEM.67.7.3208-3215.2001

Said, W. A., and Lewis, D. L. (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied Environmental Microbiology, 57, 1498-1503.

https://doi.org/10.1128/aem.57.5.1498-1503.1991

Sevgİ, E., Coral, G., Gİzİr, A. M., & Sangün, M.K. (2010). Investigation of heavy metal resistance in some bacterial strains isolated from industrail soils. Turkish Journal of Biology, 34, 423-431. doi:10.3906/biy-0901-23

https://doi.org/10.3906/biy-0901-23

Singh, K. R., Kumar, S., Kumar, S., and Kumar,A. (2008). Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal, 40, 293-303.doi:10.1016/j.bej.2007.12.015

https://doi.org/10.1016/j.bej.2007.12.015

Teissier, G. (1942). Croissance des populations bacte'riennes et quantite'd'aliment disponible (Growth of bacterial populations and the available substrate concentration). Revision Science, 80, 209.

Webb, J. L. (1963). "Enzymes and Metabolic Inhibitors." In Boston: Academic Press.

https://doi.org/10.5962/bhl.title.7320

Wuertz, S., Miller, C. E., Pfister, R. M., and Cooney, J. J. (1991). Tributyltin-Resistant Bacteria from Estuarine and Freshwater Sediments. Applied and Environmental Microbiology, 57(10), 2783-2789.

https://doi.org/10.1128/aem.57.10.2783-2789.1991

Wyszkowska, J., Kucharski, J., Borowik, A., and Boros, E. (2008). Response of Bacteria to soil contamination with heavy metals. Journal of Elementol, 13(3), 443-453.

Yano, T., Nakahara, T., Kamiyama, S., and Yamada, K. (1966). Kinetic studies on microbial activities in concentrated solutions. I . Effect of excess sugars on oxygen uptake rate of a cell-free respiratory system. Agricultural and Biological Chemistry, 30, 42-48.

https://doi.org/10.1271/bbb1961.30.42

https://doi.org/10.1080/00021369.1966.10858549

Downloads

Published

30-06-2017

How to Cite

Abdussamad Abubakar, Abdullahi Muhammad, Dayyabu Shehu, Murtala Ya’u, Abba Babandi, Abubakar Sadiq Tanko, Ferdaus Mohamat-yusuff, Hadiza Ibrahim, & Salihu Ibrahim. (2017). Abdussamad Abubakar1, Abdullahi Muhammad2, Dayyabu Shehu3, Murtala Ya’u3, Abba Babandi3, Abubakar Sadiq Tanko4, Ferdaus Mohamat-yusuff5, Hadiza Ibrahim6 and Salihu Ibrahim2*. UMYU Journal of Microbiology Research (UJMR), 2(1), 192–199. https://doi.org/10.47430/ujmr.1721.028

Most read articles by the same author(s)