Anaerobic Digestion Technology for Biogas Production: Current Situation in Nigeria (A Review)
DOI:
https://doi.org/10.47430/ujmr.2382.018Keywords:
Anaerobic digestion, Biogas, Municipal Solid Waste, Bio-methane, Waste management,Abstract
In view of the nation's vast agricultural resources, crop residues, animal manure, municipal waste, and wastewater sludge may be transformed into renewable energy, potentially a source of revenue. Biogas production offers cleaner, sustainable solutions across the nation. The compass of supportive policy and regulation emerges, guiding investment toward transformative shores. Various "Waste-to-Energy" academic researches and pilot projects illuminate paths to energy generation, waste management and sustainability with the prospects of a viable bioeconomy. The application of anaerobic digestion technology contributes to a greener and more sustainable energy future. In Nigeria, biogas production holds multifaceted benefits which include energy sustainability waste management, and climate change mitigation. By harnessing organic waste, energy source diversification reduces reliance on fossil fuels. Biogas mitigates environmental pollution, converts waste to value, which is key to climate goals. Sustaining biogas production requires incentives, research, expertise, public awareness, and infrastructure. Collaboration and strategic partnerships will likely accelerate Nigeria's biogas production potential. In conclusion, this review underscores the immense potential of biogas production in Nigeria. It seeks to enliven the discussion for fostering efficient management of the abundant organic resources, supportive policies, public engagement, technological advancements, and partnerships that can bring about a wider implementation of biogas production projects across Nigeria towards a greener and sustainable energy future.
Downloads
References
Ahammad, S.Z. and Sreekrishnan, T.R. (2016). Biogas: An Evolutionary Perspective in the Indian Context. In Green Fuels Technology; Green Energy and Technology; Springer: Cham, Switzerland, pp. 431-443. ISBN 978-3-319-30203-44. https://doi.org/10.1007/978-3-319-30205-8_17
Ajaero, C. C., Okafor, C. C., Otunomo, F. A., Nduji, N. N., and Adedapo, J. A. (2023). Energy production potential of organic fraction of municipal solid waste (OFMSW) and its implications for Nigeria. Clean Technologies and Recycling, 3(1), 44-65. https://doi.org/10.3934/ctr.2023003
Akinbomi J., Brandberg, T., Sanni, S. A., and Taherzadeh, M. J. (2014). "Development and dissemination strategies for accelerating biogas production in Nigeria," BioResources 9(3), 5707-5737.
Amoo, A. O., Ahmed, S., and Haruna, A. (2023). Combinatorial Effect of Process Parameters on the Rate of Biogas Production and Rate of Substrate Degradation Following Anaerobic Digestion of Food Waste and Rumen Content. Journal of Applied Sciences and Environmental Management, 27(3), 449-455. https://doi.org/10.4314/jasem.v27i3.7
Ampese, L. C., Sganzerla, W. G., Ziero, H. D. D., Mudhoo, A., Martins, G., and Forster-Carneiro, T. (2022). Research progress, trends, and updates on anaerobic digestion technology: A bibliometric analysis. Journal of Cleaner Production, 331, 130004. https://doi.org/10.1016/j.jclepro.2021.130004
Anukam, A., Mohammadi, A., Naqvi, M., and Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes, 7(8), 504. https://doi.org/10.3390/pr7080504
Anyaoha, K. E., and Zhang, L. (2023). Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria. Environment, Development and Sustainability, 25(5), 4575-4595. https://doi.org/10.1007/s10668-022-02215-8
Aworanti, O. A., Agbede, O. O., Agarry, S. E., Ajani, A. O., Ogunkunle, O., Laseinde, O. T. and Fattah, I. M. R. (2023). Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables. Energies, 16(8), 3378. https://doi.org/10.3390/en16083378
Babatola, J. O., Olotu, O., Awode, A., and Adelodun, A. (2023). Effects of using P. juliflora leaves as additive in anaerobic digestion of poultry wastes. Global Sustainability Research, 2(2), 58-70. https://doi.org/10.56556/gssr.v2i2.518
Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., and Iyyappan, J. (2018). Biogas production-A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and sustainable Energy Reviews, 90(April), 570-582. https://doi.org/10.1016/j.rser.2018.03.093
Bhatt, A. H., and Tao, L. (2020). Economic perspectives of biogas production via anaerobic digestion. Bioengineering, 7(3), 74. https://doi.org/10.3390/bioengineering7030074
Bijarchiyan, M., Sahebi, H., and Mirzamohammadi, S. (2020). A sustainable biomass network design model for bioenergy production by anaerobic digestion technology: using agricultural residues and livestock manure. Energy, Sustainability and Society, 10, 1-17. https://doi.org/10.1186/s13705-020-00252-7
Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., and Aivasidis, A. (2021). Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renewable Energy, 168, 438-447. https://doi.org/10.1016/j.renene.2020.12.034
Dickson, E. M., Hastings, A., and Smith, J. (2023). Energy production from municipal solid waste in low to middle income countries: a case study of how to build a circular economy in Abuja, Nigeria. Frontiers in Sustainability, 4, 1173474. https://doi.org/10.3389/frsus.2023.1173474
Ekwenna, E. B., Wang, Y., and Roskilly, A. (2023). Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane cogeneration. Applied Energy, 348, 121574. https://doi.org/10.1016/j.apenergy.2023.121574
Guardian Newspaper (2019). Lagos abattoir converts cow waste to biogas, https://guardian.ng/property/lagos-abattoir-converts-cow-waste-to-biogas/ assessed on the 4th December, 2023.
Hassan A., Adeyemi A.I., and Odunayo A.P. (2023). Biogas production from animal and modified oil palm bunch wastes. FUW Trends in Science & Technology Journal, 8(2): 94 - 99. Avenam. https://avenamlinks.com/gallery/ assessed on 4th December, 2023.
Iglesias, R., Muñoz, R., Polanco, M., Díaz, I., Susmozas, A., Moreno, A. D. and Ballesteros, M. (2021). Biogas from anaerobic digestion as an energy vector: Current upgrading development. Energies, 14(10), 2742. https://doi.org/10.3390/en14102742
IITA (2022). IITA Y-SWEP biogas technology: A sustainable energy solution and gateway to more research. Retrieved from https://www.iita.org/news-item/iita-y-swep-biogas-technology-a-sustainable-energy-solution-and-gateway-to-more-research/assessed on 10th December, 2023
Ikpe A.E., Imonitie D.I., Ndon A.E. (2019). Investigation of biogas energy derivation from anaerobic digestion of different local food wastes in Nigeria. Academic Platform Journal of Engineering and Science, 7-2, 332-340. https://doi.org/10.21541/apjes.441166
Khanal, S. K., Lu, F., Wong, J. W., Wu, D., and Oechsner, H. (2021). Anaerobic digestion beyond biogas. Bioresource Technology, 337, 125378. https://doi.org/10.1016/j.biortech.2021.125378
Kim, H. G., Lee, D. S., Jang, H. N., and Chung, T. H. (2010). Anaerobic digestion technology for biogas production using organic waste. Journal of the Korea Organic Resources Recycling Association, 18(3), 50-59.
Kor-Bicakci, G., and Eskicioglu, C. (2019). Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renewable and Sustainable Energy Reviews, 110, 423-443. https://doi.org/10.1016/j.rser.2019.05.002
Kumar, A., and Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253
Kumar, M., Dutta, S., You, S., Luo, G., Zhang, S., Show, P. L. and Tsang, D. C. (2021). A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 305, 127143. https://doi.org/10.1016/j.jclepro.2021.127143
Kunatsa, T., and Xia, X. (2022). A review on anaerobic digestion with focus on the role of biomass codigestion, modelling and optimization on biogas production and enhancement. Bioresource Technology, 344, 126311. https://doi.org/10.1016/j.biortech.2021.126311
Li, R., Fan, X., Jiang, Y., Wang, R., Guo, R., Zhang, Y., and Fu, S. (2023). From Anaerobic Digestion to Single Cell Protein Synthesis: A Promising Route Beyond Biogas Utilization. Water Research, 120417. https://doi.org/10.1016/j.watres.2023.120417
Maciel-Silva, F. W., Mussatto, S. I., and Forster-Carneiro, T. (2019). Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. Journal of cleaner production, 228, 1131-1142. https://doi.org/10.1016/j.jclepro.2019.04.362
Maria, M. P., Torres, N. H., Nascimento, V. R. S., Chagas, T. S. A., Saratale, G. D., Mulla, S. I., and Ferreira, L. F. R. (2023). Current advances in the brewery wastewater treatment from anaerobic digestion for biogas production: A systematic review. Environmental Advances, 100394. https://doi.org/10.1016/j.envadv.2023.100394
Masebinu, S. O., Akinlabi, E. T., Muzenda, E., and Aboyade, A. O. (2019). A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews, 103, 291-307. https://doi.org/10.1016/j.rser.2018.12.048
Messineo, A., Maniscalco, M. P., and Volpe, R. (2020). Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state-of-the-art technology. Science of the Total Environment, 703, 135508. https://doi.org/10.1016/j.scitotenv.2019.135508
Nwoke, O. A., Okeke, C., Chukwuma, E., Ime, C., Ulasi, G., Echiegu, E., and Omah, A. (2023). Effect of ground insulation and feed stock on performance of fixed dome biogas digester. Agricultural Engineering International: CIGR Journal, 25(2).
Obileke, K., Nwokolo, N., Makaka, G., Mukumba, P., and Onyeaka, H. (2021). Anaerobic digestion: Technology for biogas production as a source of renewable energy-A review. Energy & Environment, 32(2), 191-225. https://doi.org/10.1177/0958305X20923117
O'Connor, S., Ehimen, E., Pillai, S. C., Black, A., Tormey, D., and Bartlett, J. (2021). Biogas production from small-scale anaerobic digestion plants on European farms. Renewable and Sustainable Energy Reviews, 139, 110580. https://doi.org/10.1016/j.rser.2020.110580
Ofomatah, A. C., Okoro, G. I., Ezekoye, V. A., Agbogu, A., and Ezekoye, D. (2023). The effects of catalyst and codigestion on the performance of biogas yield. In IOP Conference Series: Earth and Environmental Science (Vol. 1178, No. 1, p. 012014). IOP Publishing. https://doi.org/10.1088/1755-1315/1178/1/012014
Ore, O. T., Akeremale, O. K., Adeola, A. O., Ichipi, E., and Olubodun, K. O. (2023). Production and kinetic studies of biogas from anaerobic digestion of banana and cassava wastes. Chemistry Africa, 6(1), 477-484. https://doi.org/10.1007/s42250-022-00502-5
Otieno, E. O., Kiplimo, R., and Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes codigested with livestock wastes. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14041
Ozigis I.I., Oodo S.O. and Lawal N.M. (2019). Design of an anaerobic digester for generation of biogas fired in a burner and lamp. FUOYE Journal of Engineering and Technology, 4: 2579-0625 (Online), 2579-0617 (Paper). https://doi.org/10.46792/fuoyejet.v4i1.282
Pramanik, S. K., Suja, F. B., Zain, S. M., and Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310
Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., and Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261, 116497. https://doi.org/10.1016/j.fuel.2019.116497
Riagbayire, F., and Nayem, Z. (2023). Biogas: An Alternative Energy Source for Domestic and Small-Scale Industrial Use in Nigeria. American Journal of Innovation in Science and Engineering, 2(1), 8-16. https://doi.org/10.54536/ajise.v2i1.1217
Singh, R., Hans, M., Kumar, S., and Yadav, Y. K. (2023). Thermophilic Anaerobic Digestion: An Advancement towards Enhanced Biogas Production from Lignocellulosic Biomass. Sustainability, 15(3), 1859. https://doi.org/10.3390/su15031859
Subbarao, P. M., D'Silva, T. C., Adlak, K., Kumar, S., Chandra, R., and Vijay, V. K. (2023). Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environmental Research, 116286. https://doi.org/10.1016/j.envres.2023.116286
Thompson, T. M., Young, B. R., and Baroutian, S. (2020). Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertilizer recovery. Fuel, 279, 118527. https://doi.org/10.1016/j.fuel.2020.118527
Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L. and Chu, Y. M. (2021). Prospects of bioenergy production from organic waste using anaerobic digestion technology: a mini review. Frontiers in Energy Research, 9, 627093. https://doi.org/10.3389/fenrg.2021.627093
Vyas, S., Prajapati, P., Shah, A. V., Srivastava, V. K., and Varjani, S. (2022). Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel, 311, 122625. https://doi.org/10.1016/j.fuel.2021.122625
Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A. and Taherzadeh, M. J. (2020). Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, 122778. https://doi.org/10.1016/j.biortech.2020.122778
Yang, S., Luo, F., Yan, J., Zhang, T., Xian, Z., Huang, W. and Huang, L. (2023). Biogas production of food waste with in situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. Bioresource Technology, 373, 128712. https://doi.org/10.1016/j.biortech.2023.128712
Yao, Y., Huang, G., An, C., Chen, X., Zhang, P., Xin, X. and Agnew, J. (2020). Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. Renewable and Sustainable Energy Reviews, 119, 109494. https://doi.org/10.1016/j.rser.2019.109494
Yue, T., Liu, T., Chu, X., Zheng, G., Wang, M., and Sun, Y. (2023). Effects of biogas slurry reflux mode and reflux rate on methane production by mixed anaerobic digestion of corn straw and pig manure. Journal of Cleaner Production, 411, 137214. https://doi.org/10.1016/j.jclepro.2023.137214
Yusuf, A. A., Abubakar, A. M., Wali, S. A., and Ngulde, A. B. (2023). Comparison of the First Order and Modified First-Order Model for Biogas Production from Chicken Manure in Maiduguri, Borno State of Nigeria. International Journal of Scientific and Multidisciplinary Research, 1(2): 73-78. https://doi.org/10.55927/ijsmr.v1i2.3320
Zanna, M. W., and Jatto, M. A. (2023). An Enhanced Biogas Production from Organic Waste and Biotech Culture. Fane-Fane International Multi-Disciplinary Journal, 7(1, June), 8-16.
Zhao, W., Yang, H., He, S., Zhao, Q., and Wei, L. (2021). A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments. Bioresource Technology, 341, 125797. https://doi.org/10.1016/j.biortech.2021.125797
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Journal of Microbiology Research (UJMR)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.