A Concurrent Extended Spectrum Beta-lactamase Production and Multidrug Resistance among Proteus Species isolated from Clinical samples of patients attending selected Hospitals in North Eastern Nigeria.

Authors

  • Isyaka Tom Mohammed Medical Microbiology Unit, Department of Microbiology, Faculty of Life Sciences, Bayero University Kano. Nigeria https://orcid.org/0000-0002-2717-0451
  • A Dutsinma Usman Medical Microbiology Unit, Department of Microbiology, Faculty of Life Sciences, Bayero University Kano. Nigeria
  • Aishatu A Ibrahim Medical Microbiology Unit, Department of Microbiology, Faculty of Life Sciences, Bayero University Kano. Nigeria
  • Askira M Umoru Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Maiduguri, Nigeria
  • Muhammad M Ibrahim Department of Microbiology, University of Maiduguri, Nigeria
  • Jidda B Umar Department of Medical Microbiology, University of Maiduguri Teaching Hospital, Nigeria

DOI:

https://doi.org/10.47430/ujmr.2491.002

Keywords:

Proteus species, Extended-spectrum beta-lactamase, Multidrug resistance, hospitals

Abstract

Proteus species are rod-shaped, Gram-negative bacteria that cause opportunistic infections in the urinary tract and occasionally in the gastrointestinal tract.  They are implicated in infections like cystitis and pyelonephritis, particularly in immunocompromised individuals, and are frequently present in cases of asymptomatic bacteriuria.  Herein, we aimed to investigate the co-occurrence of extended-spectrum beta-lactamase (ESBL) enzyme production and multidrug resistance (MDR) among Proteus spp. Isolated from patients attending selected hospitals in Northeastern Nigeria.  A total of 1,500 clinical samples from consenting patients across six states in the Northeastern region of Nigeria were collected.  The samples were cultured on Blood agar, and growth resembling that of Proteus species were again subcultured onto MacConkey agar to obtain discrete colonies, further confirmed using biochemical tests.  Antibiotics susceptibility test was carried out for all isolates using the Kirby-Bauer disc diffusion method, coupled with a screening of the production of extended-spectrum beta-lactamase using the Combined Disc Diffusion Method.  Of the 1500 samples collected, 144 yielded positive growth for Proteus spp., resulting in a prevalence rate of 9.60%.  Among these Proteus isolates, three species were identified, with Proteus mirabilis (90.97%) being the most abundant, followed by Proteus vulgaris (8.33%) and Proteus penneri (0.70%).  The Proteus isolates displayed significant resistance to β-lactam antibiotics, with a Mean ± SD of 96.64 ± 22.73.  A substantial portion of the Proteus spp. Isolated exhibited multidrug resistance (87.89%), with Proteus mirabilis (82.27%) being the most prevalent MDR species.  Moreover, about 71.0% of the Proteus spp were ESBL producers, with Proteus mirabilis (64.54%) being the most predominant.  Furthermore, 67.38% of all isolates exhibited MDR and ESBL production, and Proteus mirabilis (62.41%) was the most significant among the three Proteus species.  These findings highlight the occurrence of multidrug resistance and ESBL production among Proteus spp. in Northeastern Nigeria, with Proteus mirabilis particularly noteworthy.  This information is crucial for guiding clinical decision-making, especially in managing infections caused by multidrug-resistant and ESBL-producing Proteus strains.

Downloads

Download data is not yet available.

References

Abera, B., & Biadeglegne, F. (2009). Antimicrobial resistance patterns of Staphylococcus aureus and Proteus spp. isolated from otitis media at Bahir Dar Regional Laboratory, North West Ethiopia. Ethiopian Medical Journal, 47(4), 271-276.

Akubuenyi, F. C., Arikpo, G. E., Ogugbue, C. J., Mfongeh, J. F. and Akpanumun, E. V. (2011). Antibiotic resistance profile of waste water isolates obtained from University of Calabar Teaching Hospital and General Hospital Calabar, Nigeria. Nigerian Journal of Microbiology, 25: 2243-2250.

Baker, F. J., Silverton, R. E. & Pallister, C. J. (2007). Baker and Silverton's Introduction to Medical Laboratory Technology. Publisher: Bounty Press Limited, Nigeria. Pg 285-311.

Bahashwan, S. A., & El Shafey, H. M. (2013). Antimicrobial Resistance Patterns of Proteus Isolates from Clinical Specimens. European Scientific Journal, 9, 122-125.

Bradford, P. A. (2001). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical microbiology reviews, 14(4), 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001

CDC, (2021). Centers for Disease Control and Prevention. Antimicrobial resistance. Available online: https://www.cdc.gov/drugresistance (accessed on 12th December, 2023)

Cerceo, E., Deitelzweig, S.B., Sherman, B.M., & Amin, A.N. (2016). Multidrug-Resistant Gram Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microbial Drug Resistance, 22, 412-431. https://doi.org/10.1089/mdr.2015.0220

Cheesbrough, B. (2006). District Laboratory practice in Tropical Countries Part 2, Second Edition Cambridge University Press, Cambridge. Pg. 132-143. https://doi.org/10.1017/CBO9780511543470

Clinical and Laboratory Standards Institute (CLSI). (2023).Performance standards for antimicrobial susceptibility testing: Thirty-third informational supplement. National Committee for clinical laboratory standards document M100-Ed33, Wayne Pennslyvania, USA, 44-61

Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264, 375-382. https://doi.org/10.1126/science.8153624

Dhillon, R. H. P., & Clark, J. (2011). ESBLs: A Clear and Present Danger? Critical Care Research and Practice, 2012, 11.https://doi.org/10.1155/2012/625170

Ejikeugwu, C. (2023). Preparation of 0.5 Mcfarland Turbidity Standards. www.MicrobiologyClass.net

Falagas, M. E., & Karageorgopoulos, D. E. (2009). Extended spectrum beta lactamase producing organisms. Journal of Hospital Infection. 73(4), 345-354. https://doi.org/10.1016/j.jhin.2009.02.021

Fam, N., Leflon-Guibout, V., Fouad, S., Aboul-Fadl, L., Marcon, E., & Desouky, D. (2011). CTX-M-15- producing Escherichia coli clinical isolates in Cairo (Egypt), including isolates of clonal complex ST10 and clones ST131, ST73, and ST405 in both community and hospital settings. Microbial Drug Resistance, 17, 6773. https://doi.org/10.1089/mdr.2010.0063

Feglo, P. K., Stephen, Y. G., Solomon Nii, A. Q. & Clement, O. (2010). Occurrence of spp distribution and antibiotic resistance of Proteus isolates: A case study at the Komfo Anakye Teaching Hospital (KATH) Ghana. International Journal of Pharmaceutical Sciences and Research, 1(9), 347-352.

Ghenea, A. E., Zlatian, O. M., Cristea, O. M., Ungureanu, A., Mititelu, R. R., Balasoiu, A. T. et al. (2022). TEM, CTX-M, SHV Genes in ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania- Predominance of CTX-M-15. Antibiotics, 11, 503. https://doi.org/10.3390/antibiotics11040503

Hakim, F. T., & Gress, R. E. (2007). Immunosenescence: Deficits in adaptive immunity in the elderly. Tissue Antigens, 70(3), 179-189. https://doi.org/10.1111/j.1399-0039.2007.00891.x

Jacoby, G. A., & Munoz-Price, L. S. (2005). The new betalactamases. The New England Journal of Medicine, 352(4), 380-391. https://doi.org/10.1056/NEJMra041359

Lautenbach, E., Strom, B. L., Bilker, W. B., Patel, J. B., Edelstein, P. H. & Fishman, N. O. (2001). Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum β- lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clinical Infectious Disease, 33, 1288-1294. https://doi.org/10.1086/322667

Livermore, M. D. (2003). Bacterial resistance: Origins, epidemiology and impact. Clinical Infectious Disease. 36, 11-23. https://doi.org/10.1086/344654

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Medina, E., & Pieper, D. H. (2016). Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Current Topics in Microbiology and Immunology, 398, 3-33. https://doi.org/10.1007/82_2016_492

Mendelson, G., Hait, V., Ben-Israel, J., Gronich, D., Granot, E. & Raz, R. (2005). Prevalence and risk factors of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term care facility. European Journal of Clinical Microbiology and Infectious Disease, 24, 17-22. https://doi.org/10.1007/s10096-004-1264-8

Oberoi, L., Nachhatarjit S., Poonam S. & Aruna A.(2013). ESBL, MBL and AmpC betalactamases Producing Superbugs-Havoc in the Intensive Care Units of Punjab India. Journal of Clinical and Diagnostic Research, 7(1), 70-73. https://doi.org/10.7860/JCDR/2012/5016.2673

Omole, A., & Stephen, E. (2014). Antibiogram Profile of Bacteria Isolated from Wound Infection of Patients in Three Hospitals in Anyigba, Kogi Sate, Nigeria. FUTA Journal of Research in Sciences, 2, 258-266.

Pacios O., Blasco L., Bleriot I., Fernandez-Garcia L., Bardanca M. G., Ambroa A., López M., Bou G. & Tomás M. (2020). Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiotics, 9, 65. https://doi.org/10.3390/antibiotics9020065

Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Review, 18(4):657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005

Ribeiro da Cunha, B., Fonseca, L. P., & Calado, C. R. (2019). Antibiotic discovery: where have we come from, where do we go?. Antibiotics, 8(2), 45. https://doi.org/10.3390/antibiotics8020045

Sah, S. K. & Hemalatha, S. (2015). Extended spectrum Beta lactamase (ESBL) Mechanism of antibiotic resistance and Epidemiology. International Journal of Pharmaceutical Technology Research, 7(2), 303-309

Schaufler, K., Semmler, T., Wieler, L. H., Wöhrmann, M., Baddam, R., Ahmed, N., Müller, K., Kola, A., Fruth, A., Ewers, C. et al. (2016). Clonal spread and interspecies transmission of clinically relevant ESBL producing Escherichia coli of ST410-Another successful pandemic clone. FEMS Microbiology and ecology, 92, 155. https://doi.org/10.1093/femsec/fiv155

Senthamarai, S., Sivasankari, S., Anitha C., Kumudavathi, M. S., Amshavathani S. K., Venugopal, V. & Thenmozhi Valli, P. R. (2015). A study of the antibiotic susceptibility pattern of Proteus spp among various samples. International Journal of Advances in Pharmacy, Biology and Chemistry, 4(2), 355-360.

Stock, I. (2003). Natural antibiotic susceptibility of Proteus spp., with special reference to P. mirabilis and P. penneri strains. Journal of Chemotheraphy, 15:12-26. https://doi.org/10.1179/joc.2003.15.1.12

Tenover, F. C. (2001). Development and spread of bacterial resistance to antimicrobial agents: An overview. Clinical and Infectious Disease, 33:108-115. https://doi.org/10.1086/321834

Tom, M. I., Agbo, E. B., Umar, A. F., Ibrahim. M. M., Askira, M. U., Jidda, B. U., Abdullahi, A., & Ali, B. H. (2018). Plasmid Profile Analysis of Multi-drug Resistant Proteus spp isolated from Patients with Wound Infection in Northeastern Nigeria. International Journal of Pathogen Research, 1(2): 1-9. https://doi.org/10.9734/ijpr/2018/v1i21245

Torpy, J. M., Alison, B., & Richard, M. G. (2005). Surgical wound infections. JAMA Network, 294, 21-22. https://doi.org/10.1001/jama.294.21.2800

Umar, J. B., Ibrahim, M. M., Tom, I. M., Umoru, A. M., & Isa, T. (2016). Pseudomonas aeruginosa in otitis media. International Journal of Medicine, 4(2), 55-57. https://doi.org/10.14419/ijm.v4i2.6581

Van-Almsick, V., Schuler, F., Mellmann, A., & Schwierzeck, V. (2022). The use of long-read sequencing technologies in infection control: Horizontal transfer of a blaCTX-M-27 containing lncFII plasmid in a patient screening sample. Microorganisms, 10, 491. https://doi.org/10.3390/microorganisms10030491

Versalovic, J., Carroll, K., Jorgensen, J., Funke, G., Landry, M. & Warnock, D. (2011). Manual of Clinical Microbiology. American Society for Microbiology ASM Press, Washington, USA. Pp. 450-575. https://doi.org/10.1128/9781555816728

Vubil, D., Figueiredo, R., Reis, T., Canha, C., Boaventura, L., & DA Silva, G. J. (2017). Outbreak of KPC-3- producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiology and infection, 145(3), 595-599. https://doi.org/10.1017/S0950268816002442

Yusha'u, M., Aliyu, H. M., Kumurya A. S., & Suleiman K. (2010). Prevalence of extended spectrum β- lactamases (ESBLS) among Enterobacteriaceae in Murtala Mohammed Specialist Hospital, Kano, Nigeria. Bayero Journal of Pure and Applied Sciences, 3(1): 169- 172. https://doi.org/10.4314/bajopas.v3i1.58756

WHO, (2019). Worldwide Country Situation Analysis: Response to Antimicrobial Resistance; WHO Library Cataloguing-in-Publication Data; World Health Organization: Geneva, Switzerland.

Downloads

Published

19-05-2024

How to Cite

Mohammed, I. T., Usman, A. D., Ibrahim, A. A., Umoru, A. M., Ibrahim, M. M., & Umar, J. B. (2024). A Concurrent Extended Spectrum Beta-lactamase Production and Multidrug Resistance among Proteus Species isolated from Clinical samples of patients attending selected Hospitals in North Eastern Nigeria. UMYU Journal of Microbiology Research (UJMR), 9(1), 15–25. https://doi.org/10.47430/ujmr.2491.002