Optimization of Fermentation Conditions for Cellulase Production by Trichoderma harzianum PK5 Obtained from Decaying Palm Kernel Cake

Authors

  • Antia, U. E. Department of Microbiology, Akwa Ibom State University, Nigeria https://orcid.org/0000-0001-9035-5267
  • Adeleke, A. J. Department of Microbiology, Modibbo Adama University, Yola, Nigeria https://orcid.org/0000-0001-7586-5410
  • Stephen, N. U. Department of Microbiology, Akwa Ibom State University, Nigeria
  • Owowo, E. E. Department of Microbiology, Akwa Ibom State University, Nigeria
  • Uyanga, F. Z. Department of Microbiology, Akwa Ibom State University, Nigeria
  • Okon, J. E. Department of Botany, Akwa Ibom State University, Nigeria
  • Okon, O. G. Department of Botany, Akwa Ibom State University, Nigeria
  • Udoh, I. E. Department of Food Science and Technology, University of Uyo, Nigeria

DOI:

https://doi.org/10.47430/ujmr.2493.007

Keywords:

Trichoderma harzianum, Optimization, Solid State Fermentation, Cellulase, OFAT

Abstract

Study’s Novelty Excerpt

  • This study presents a novel optimization of cellulase production by Trichoderma harzianum PK5 using the One Factor at a Time (OFAT) approach, highlighting significant advancements in enzyme yield through precise adjustments of fermentation parameters.
  • By identifying copra meal and KNO₃ as the optimal carbon and nitrogen sources and establishing key environmental conditions, the research achieves a notable enzyme titre of 252.54±7.73 U/gds in solid-state fermentation.
  • These findings contribute to cost-effective cellulase production methodologies, enhancing the commercial viability and industrial application of microbial cellulases.

Full Abstract

Cellulases are considered to be among the most important enzymes in the commercial market and in various industries. Their applications are widespread, leading to increased demand and high associated costs. This necessitates the search for more cost-effective cellulases from microorganisms. Therefore, the aim of this study was to optimize cellulase production by Trichoderma harzianum PK5 using the One Factor at a Time (OFAT) approach. The effects of carbon, nitrogen, and various environmental factors were studied in both submerged and solid-state fermentation setups by adjusting one factor at a time based on the optimal conditions established from the previous condition. Copra meal and KNO3 were identified as the best complex carbon and nitrogen sources, respectively, for cellulase production by Trichoderma harzianum PK5. The optimal pH of 4.0, moisture concentration of 125% (v/w), inoculum size of 8%, temperature of 30°C, and an incubation time of 7 days were determined as the optimal conditions for cellulase production by this isolate, resulting in an enzyme titre of 252.54±7.73 U/gds in solid-state fermentation. It was found that cellulase enzyme production by the isolate was constitutive. In conclusion, cellulase production by T. harzianum PK5 was significantly optimized using the OFAT approach

Downloads

Download data is not yet available.

References

Ahmed, S., Riaz, S., and Jamil, A., (2009). Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84 (1), 19-35. https://doi.org/10.1007/s00253-009-2079-4

Antia, U. E., Akan, O. D., Stephen, N. U., Eno-Ibanga, C. K., and Akpan, N. G. (2018). Isolation and Screening of Yeast Isolates Indigenous Palm Wine for Ethanol Production. Philippine Journal of Science, 147(3).

Anita, U. E., Stephen, N. U., Onilude, A. A., and Ibanga, I. A. (2019). Studies of the Nutritional, Environmental Effects and Repressive Nature of Simple Sugars on the Production of endo-β-mannanase by Aspergillus flavus PT7 on Solid State Fermentation. Journal of Advances in Biology & Biotechnology, 21(4), 1-12. https://doi.org/10.9734/jabb/2019/v21i430101

Biswas, S.R., Jana, S.C., Mishra, A.K., and Nanda, G. (1990). Production, purification, and characterization of xylanase from a hyperxylanolytic mutant of Aspergillus ochraceus. Biotechnology and Bioengineering, 35(3):244-251. https://doi.org/10.1002/bit.260350305

Coughlan, M. (1985). Cellulases: production, properties and applications. Biochemical Society Transactions, 13: 405-406. https://doi.org/10.1042/bst0130405

Darah, S. I. and Omar, I. (2010). Utilization of Palm Kernel Cake for The Production of Mannanase by an indigenous filamentous fungus, Aspergillus niger USM F4 Under Solid Substrate Fermentation. The Internet Journal of Microbiology 9(1). https://doi.org/10.5580/2779

De Loannes P., Peirano A., Steiner J. and Ezyaguirre J. (2000). An α-L-arabinofuranosidase from Penicillium purpurogenum: production, purification and properties. Journal of Biotechnology, 76: 253-258. https://doi.org/10.1016/S0168-1656(99)00190-X

Devi, C. M. and Kumar M. S. (2012). Isolation and screening of lignocellulose hydrolytic saprophytic fungi from dairy manure soil. Annals of Biological Research, 3(2):1145-1152.

Fritz, M., Ravanal,M. C. Braet, C. and Eyzaguirre, J. (2008). A family 51 α -L-arabinofuranosidase from Penicillium purpurogenum: purification, propertiesand amino acid sequence. Mycologia Research, 112(8): 933- 942. https://doi.org/10.1016/j.mycres.2008.01.022

Grassin, C. and P. Fauquembergue. (1996). Wine; and Fruit juices. In: Industrial Enzymology (2nd Ed.) (Eds): T. Godfrey and S. West. Macmillan Press Ltd.

Growindhager, C., Sachslehner, A. Nidetzky, B. and Haltrich, D. (1999). Endo-beta-1,4-D-mannnase is efficiently produced by Sclerotium (Athelia) rolfsii under depressed conditions. Journal of Biotechnology, 67: 189-203. https://doi.org/10.1016/S0168-1656(98)00176-X

Himmel, M. E., Baker, J. O. and Overend, R. P. (1994). Approaches to cellulase purification. In: Enzymatic Conversion of Biomass for Fuel Production. ACS symposium series 566. https://doi.org/10.1021/bk-1994-0566

Ibrahim, D., Puspitaloka, H., Rahim, R. A., and Hong, L. S. (2012). Characterization of Solid-State Fermentation Culture Conditions for Growth and Mananase Production by Aspergillus niger USM F4 on Rice Husk in Tray System. British Biotechnology Journal, 2(3)133-145. https://doi.org/10.9734/BBJ/2012/1486

Ikasari, L. and Mitchell, D. A. (1994). Protease production by Rhizopus oligosporus in Solid state fermentation. Applied Microbiology and Biotechnology, 10: 320 - 324. https://doi.org/10.1007/BF00414872

Immanuel, G., Bhgavath, C. M. A., Raj, P. I., Esakkiraj, P., Palavaesan, I. (2007). Production and partial purification of cellulose by Aspergillus niger and Aspergillus fumigatus in Coir wastes and sawdusts. The Internet Journal of Microbiology, 3(1): 2-12.

Jahangeer, S., Khan, N., Jahangeer, S., Sohail, M., Shahzad, S., Ahmad, A., Ahmed, Khan, S. (2005). Screening and characterisation of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany, 37(3): 739 - 748.

Koseki, T., Miwa, Y., Mese, Y., Miyanaga, A., Fushinobu, S., Wakgi, T., Shoun, H. Matsuzawa, H. and Hashizume, K. (2006). Mutational analysis of N-glycosylation recognition sites on the biochemical properties of Aspergillus kawachii á-L-arabinofuranosidase 54. Biochimica et Biophysica Acta (BBA), 1760(9): 1458 - 1464. https://doi.org/10.1016/j.bbagen.2006.04.009

Mabrouk, M.E.M. and El Ahway, A.M.D. (2008). Production of ß-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. African Journal of Biotechnology 7(8): 1123-1128.

Malherbe, S. and Cloete, T. E. (2003). Lignocellulose biodegradation: fundamentals and applications: A Review. Environmental Science and Biotechnology, 1: 105-114. https://doi.org/10.1023/A:1020858910646

McTigue, M. A., Kelly, C. T., Fogarty, W. M., Doyle, E. M. (1994). Production Studies on the alkaline amylase of three alkalophilic Bacillus sp. Biotechnological Letters, 16:569-574. https://doi.org/10.1007/BF00128602

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426-428. https://doi.org/10.1021/ac60147a030

Onilude, A. A., Fadahunsi, I. F., Antia, U. E., Garuba, E. O., and Ja'afaru, M. I. (2012a). Characterization of crude alkaline β-mannosidase produced by Bacillus sp. 3A isolated from degraded palm kernel cake. AU Journal of Technology, 15(3).

Onilude, A. A., Fadahunsi, I. F., Garuba, E. O., & Antia, U. E. (2012b). Production of alkaline β-mannosidase by Bacillus sp. 3A in Solid State Fermentation using different Agro Wastes. Researcher, 4(1), 48-54.

Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13: 81 - 84. https://doi.org/10.1002/pssb.200301868

Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szackacs, G., and Pandey, A. (2004). Coconut oil cake-a potential material for production of a-amylase. Bioresource Technology, 93(2): 169 - 174. https://doi.org/10.1016/j.biortech.2003.10.021

Rashid, S A., Ibrahim, D. and Omar, I. C. (2012). Mannanase production by Aspergillus niger USM F4 via solid substrate fermentation in a shallow tray using palm kernel cake as a substrate. Malaysian Journal of Microbiology, 8(4): 273-279.

Sae-Lee, N. (2007). The production of fungal mannanase, cellulose and xylanase using palm kernel meal as a substrate. Walailak Journal of Science and Technology, 4: 67-82.

Santiago, S. D. N., Gonzalez, C. R., Almendarez, B. G., Fernandez, F. J., Jurado, A. T. and Ochoa, S. H. (2007). Physiology, morphological, and mannanase production studies on Aspergillus niger UAM-GS mutants. Electronic Journal of Biotechnology, 9:1. https://doi.org/10.2225/vol9-issue1-fulltext-2

Sjöström, E. (1993). Wood chemistry Fundamentals and applications, 2nd Ed.., Academic Press Inc., London.

Ufot, E. A., and Antia, U. E. Udomessien, C. K. and Umoh, V. J., (2022). Enzymatic Activities of Halotolerant and Halophilic Fungi Isolated from Iko River Estuary, South-South Nigeria. Journal of Advances in Biology & Biotechnology, 25(8), 12-27. https://doi.org/10.9734/jabb/2022/v25i8590

Venkateswarlu, G., Krishna, P. S., Pandey, A. and Rao, L. V. (2000). Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochemistry 37: 331-338. https://doi.org/10.1016/S0032-9592(00)00204-1

Walsh, G. (2002). Industrial enzymes: proteases and carbohydrases. In: Proteins; Biochemistry and Biotechnology. John Wiley and Sons. Ltd Wanderley, K. J., Torres, F. A. G., Moraes, L. M. P., and Ulhoa, C. J. 2004. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiology Letters, 231(2):165-169. https://doi.org/10.1016/S0378-1097(03)00955-8

Wang, T., Hu, S., Yu, Y., Jin, L., Zhu, J.,and Jin, J. (2020). Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 12(3). https://doi.org/10.3390/polym12030530

Youssef, A. S., El-Naggar, M. Y., El-Assar, S. A. and Beltagy, E. A. (2006). Optimization of Cultural Conditions for ß-mannanase Production by a Local Aspergillus niger Isolate. International Journal of Agriculture and Biology, 8(4):539-545

Downloads

Published

09-06-2024

How to Cite

Antia, U. E., Adeleke, A. J., Stephen, N. U., Owowo, E. E., Uyanga, F. Z., Okon, J. E., Okon, O. G., & Udoh, I. E. (2024). Optimization of Fermentation Conditions for Cellulase Production by Trichoderma harzianum PK5 Obtained from Decaying Palm Kernel Cake. UMYU Journal of Microbiology Research (UJMR), 9(3), 48–57. https://doi.org/10.47430/ujmr.2493.007