Review on Bioethanol Production using Diverse Substrates and Fungal Strains

Authors

  • Yusuf Aliyu Munir Department of Microbiology, Umaru Musa Yar’adua University, PMB 2218, Katsina, Nigeria https://orcid.org/0009-0006-5561-4626
  • Bahauddeen Dandashire Salisu Department of Microbiology, Umaru Musa Yar’adua University, PMB 2218, Katsina, Nigeria https://orcid.org/0000-0002-0474-1223
  • Kamaluddeen Kabir Department of Microbiology, Umaru Musa Yar’adua University, PMB 2218, Katsina, Nigeria

DOI:

https://doi.org/10.47430/ujmr.25103.028

Keywords:

Fossil-Fuel, Bioethanol, Biomass, Renewable-feedstocks, Fungal strains

Abstract

Study’s Excerpt:

  • Bioethanol is a key renewable energy alternative amid fossil fuel scarcity.
  • This review analyzed 3,650 studies on bioethanol from 2000 to 2024.
  • Data on bioethanol production remains scattered and under-summarized.
  • Low yield due to poor optimization limits large-scale bioethanol output.
  • Fungal strains' enzymes can be enhanced via genome editing for better yields.

Full Abstract:

The scarcity and unsustainable supply of fossil fuels in reservoirs prompt researchers to explore several alternative and sustainable energy sources from renewable feedstocks.  Given the significance of bioethanol being produced in order to meet the energy demand, the available data is scattered, with little effort to condense the findings, which will be imperative to comprehend.  This review highlights and summarizes various findings on bioethanol production.  Published studies from 2000 to 2024 were reviewed.  A total of 3,650 records were collected from various databases and sorted based on the title.  Bioethanol has recently seen growing commercialization due to its market stability, low cost, sustainability alternative fuel energy composition, greener output and massive fossil fuel depletion but the major challenges that hindered bioethanol production are due to a lack of optimization which results in a lower yield of bioethanol produced and as a result, it cannot be applied for large scale production.  The enzymatic capabilities of fungal strains are essential for Bioethanol production and can be enhanced through modern technologies such as synthetic biology and genome editing.  Future research should concentrate on harnessing the capabilities of fungal strains to improve enzymatic hydrolysis and fermentation, particularly emphasizing strain engineering strategies that enhance sugar utilization and resistance to fermentation inhibitors.

Downloads

Download data is not yet available.

References

Abo, B., Gao, M., Wang, Y., Wu, C., Ma, H. & Wang, Q. (2019). Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Reviews on Environmental Health, 34(1), 57-68. https://doi.org/10.1515/reveh-2018-0054

Abubakar,A., Bilkisu,A., &Shamsuddeen,U. (2024). Production of Amylase Enzyme by Aspergillus and Fusarium Species using Sugar Cane Bagasse. UMYU Journal of Microbiology Research (UJMR), 9(1), 202–213. https://doi.org/10.47430/ujmr.2491.022

Adeyemo, O., Ja’afaru, M., Abdulkadir, S., &Salihu, A. (2021). Saccharification and Fermentation of Cellulolytic Agricultural Biomass to Bioethanol using Locally Isolated Aspergillus niger S48 and Kluyveromyces sp. Y2, respectively. PeriodicaPolytechnica Chemical Engineering. https://doi.org/10.3311/ppch.17900.

Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., &Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015

Ahmad, A., Bilkisu, A., & Shamsuddeen, U. (2024). Production of Amylase Enzyme by Aspergillus and Fusarium Species using Sugar Cane Bagasse. UMYU Journal of Microbiology Research, 9(1), 202–213. https://doi.org/10.47430/ujmr.2491.022

Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., &Ayanshola, A. M. (2021). Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8(1), 1–25. https://doi.org/10.1186/s40643-021-00440-z

Akhabue, C. E., Otoikhian, S. K., &Onuigbo, O. G. (2018). Optimization of bioethanol production from banana peels: An alternative energy source. Journal of Chemical Society of Nigeria, 43(1), 487–494.https://journals.chemsociety.org.ng/index.php/jcsn/article/download/987/1061

Alfonsín V, Maceiras R, Gutiérrez C. (2019). Bioethanol production from industrial algae waste. Waste Manage.87:791–797. https://doi.org/10.1016/j.wasman.2019.03.019

Alternative Fuels Data Center. (2016). U.S. ethanol production and consumption. U.S. Department of Energy. https://afdc.energy.gov/data/10331

Ambaye, T. G., Vaccari, M., Bonilla-Petriciolet, A., Prasad, S., van Hullebusch, E. D., &Rtimi, S. (2021). Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. Journal of Environmental Management, 290, 112627. https://doi.org/10.1016/j.jenvman.2021.112627

Anand, R. S., & Kumar, P. (2022). Recent developments in energy recovery from sewage treatment plant sludge via anaerobic digestion. In S. Yadav, A. M. Negm, & R. N. Yadava (Eds.), Environmental management in India: Waste to wealth.https://doi.org/10.1007/978-3-030-93897-0_10

Ariyanti, D., Adi, S. P., & Muhammad, S. H. (2014). Optimization of fed-batch fermentation for bioethanol production. Bioresource Technology, 148, 261–268. https://doi.org/10.1016/j.biortech.2013.08.062

Audu, R., Ijah, U., & Mohammed, S. (2023). PrePretreatmenthysicochemical Properties and Production of Bioethanol from Rice Husk using Fungi Isolated from Waste Dumpsite in Kaduna, Nigeria. Journal of Applied Sciences and Environmental Management. https://doi.org/10.4314/jasem.v27i7.5.

Azhar, S.H.M., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J.A., Faik, A.A.M., Rodrigues, K.F., 2017. Yeasts in sustainable bioethanol production: a review. Biochem. Biophy. Rep. 10, 52e61. https://doi.org/10.1016/j.bbrep.2017.03.003

Bakare, V., Abdulsalami, M. S., Onusiriuka, B. C., Appah, J., Benjamin, B., &Ndibe, T. O. (2019). Ethanol production from lignocellulosic materials by fermentation process using yeast. Journal of Applied Science and Environmental Management, 23(5), 875–882. https://doi.org/10.4314/jasem.v23i5.17

Behl, M., Thakar, S., Ghai, H., Sakhuja, D., & Bhatt, A. K. (2023). Fundamentals of fermentation technology. In A. K. Bhatt, R. K. Bhatia, & T. C. Bhalla (Eds.), Basic biotechniques for bioprocess and bioentrepreneurship (pp. 313–328). Academic Press. https://doi.org/10.1016/B978-0-12-816109-8.00021-0

Bellaouchi, R., Abouloifa, H., Rokni, Y., Hasnaoui, A., Ghabbour, N., Hakkou, A., Bechchari, A., &Asehraou, A. (2021). Characterization and optimization of extracellular enzymes production by Aspergillus niger strains isolated from date by-products. Journal of Genetic Engineering and Biotechnology, 19(1), 50. https://doi.org/10.1186/s43141-021-00145-y

Bello, R. H., Linzmeyer, P., Franco, C. M. B., Souza, O., Sellin, N., Medeiros, S. H. W., & Marangoni, C. (2014). Pervaporation of ethEthanoloduced from banana waste. Waste Management, 34(8), 1501–1509. https://doi.org/10.1016/j.wasman.2014.04.013

Bendaoud, A., Belkhiri, A., Hmamou, A., Tlemcani, S., Eloutassi, N., &Lahkimi, A. (2024). Efficient Bioethanol Production from Lignocellulosic Biomass Using Diverse Microbial Strains. Journal of Ecological Engineering. https://doi.org/10.12911/22998993/191748.

Berka, R. M., Dunn-Coleman, N., & Ward, M. (1992). Industrial enzymes from Aspergillus species. Biotechnology, 23, 155.

Berlowska J, Pielech-Przybylska K, Balcerek M, (2017). Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp. Energies. 10(9):1255. https://doi.org/10.3390/en10091255

Bezerra, T. L., &Ragauskas, A. J. (2016). A review of sugarcane bagasse for second generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 10(5), 634–647. https://doi.org/10.1002/bbb.1662

Bezerra, T. L., &Ragauskas, A. J. (2016). A review of sugarcane bagasse for second generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 10(5), 634–647. https://doi.org/10.1002/bbb.1662

Bhuyar P, Trejo, M, Mishra, P (2022). Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel.323:124406. https://doi.org/10.1016/j.fuel.2022.124406

Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Srisupa, S., &Chaiyaso, T. (2021). Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. Journal of Fungi, 7. https://doi.org/10.3390/jof7070547.

Broda, M., Yelle, D. J., &Serwańska, K. (2022). Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions. Molecules, 27(24), 8717. https://doi.org/10.3390/molecules27248717

Carrillo-Nieves, D., Rostro-Alanis, M., Parra-Saldívar, R., & Iqbal, H. M. N. (2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 102, 63–74. https://doi.org/10.1016/j.rser.2018.11.009

Carvalheiro, F., Alves-Ferreira, J., Fernandes, M.C., Duarte, L.C. (2024). Integrated Processes of Pretreatment and Enzymatic Hydrolysis of Cellulosic Biomass. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_74-1

Chandra, R., Castillo-Zacarias, C., Delgado, P., & Parra-Saldívar, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production, 183, 1184–1196. https://doi.org/10.1016/j.jclepro.2018.02.124

Chavan, S., Kaur, G., Singh, D. P., Arya, S. K., &Krishania, M. (2024). Exploring rice straw’s potential from a sustainable biorefinery standpoint: Towards valorization and diverse product production. Process Safety and Environmental Protection, 184, 314–331. https://doi.org/10.1016/j.psep.2024.01.105

Chukwudi, I., Okechukwu, U., Ifeanyi, A., &Onyetugo, C. (2021). Studies on Bioethanol Production with Thermo Tolerant Yeast Isolates and their Co-Cultures using African Wild Cocoyam as Feedstock. Asian Journal of Biotechnology and Bioresource Technology.https://doi.org/10.9734/AJB2T/2021/V7I430105.

Chundawat, S. P., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual review of chemical and biomolecular engineering, 2, 121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205

Clain, R., Mensah, K., & Dubois, J. (2016). Anaerobic fermentation strategies for bioethanol production from lignocellulosic biomass. International Journal of Bioenergy Research, 4(2), 101–110.

Coniglio, R., Díaz, G., Fonseca, M., Castrillo, M., Piccinni, F., Villalba, L., Campos, E., & Zapata, P. (2020). Enzymatic hydrolysis of barley straw for biofuel industry using a novel strain of Trametesvillosa from Paranaense rainforest. Preparative Biochemistry & Biotechnology, 50, 753 - 762. https://doi.org/10.1080/10826068.2020.1734941.

Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., &Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia, 68, 107–116. https://doi.org/10.1016/j.egypro.2015.03.238

Dananjaya, U., Manatunga, D., Dassanayake, R., Sandaruwan, C., &Manthilaka, P. (2025). Biowaste chitin nanofibers as nano-reinforcements in EPS cement: mechanical and durability insights. Academia Nano: Science, Materials, Technology, 2(2). https://doi.org/10.20935/AcadNano7704

Darwesh, O., El-Maraghy, S., Abdel-Rahman, H., &Zaghloul, R. (2020). Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel. https://doi.org/10.1016/j.fuel.2019.116518.

Dave, N., Selvaraj, R., Varadavenkatesan, T., &Vinayagam, R. (2019). A critical review on production of bioethanol from macroalgal biomass. Algal Research, 42, 101606. https://doi.org/10.1016/j.algal.2019.101606

De Araujo Guilherme, L., Silva, R., & Oliveira, M. (2019). Innovative fermentation strategies for enhanced production of biofuels. Bioresource Technology, 274, 1–10. https://doi.org/10.1016/j.biortech.2018.11.084

de Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65(4), 497–522. https://doi.org/10.1128/MMBR.65.4.497-522.2001

Deesuth, O., Laopaiboon, L., &Laopaiboon, P. (2015). Production of bioethanol from cassava starch by co-culture of amylolytic yeast and Saccharomyces cerevisiae. Biochemical Engineering Journal, 103, 39–45. https://doi.org/10.1016/j.bej.2015.06.009

Derman, E., Abdulla, R., Marbawi, H., Sabullah, M.K., 2018. Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renew. Energy 129, 285e298. https://doi.org/10.1016/j.renene.2018.06.003

Dhungana, P., Prajapati, B., Bhatt, P., Regmi, D., Yadav, M., Maharjan, S., Lamsal, U., Kathariya, S., Chaudhary, P., & Joshi, J. (2022). Production of bioethanol from Saccharum spontaneum by simultaneous saccharification and electro-fermentation using mixed culture of microbes. Biofuels, 14, 191 - 199. https://doi.org/10.1080/17597269.2022.2126083

Douf, B., & Miezan, E. (2024). Unlocking the technology potential for universal access to clean energy in developing countries. Energies, 17(6), 1488. https://doi.org/10.3390/en17061488

Edeh, I. (2021). Bioethanol Production: An Overview. IntechOpen.https://doi.org /10.5772/intechopen.94895

El-Ghonemy, D. (2021). Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation. Journal of Genetic Engineering & Biotechnology, 19. https://doi.org/10.1186/s43141-021-00144-z

Elia, V., Gnoni, M. G., &Tornese, F. (2021). Assessing the environmental sustainability of renewable energy systems: A life cycle perspective. Renewable and Sustainable Energy Reviews, 135, 110235. https://doi.org/10.1016/j.rser.2020.110235

Elshenawy, A. A., Abdel Razik, S. M., & Gad, M. S. (2023). Modeling of combustion and emissions behavior on the effect of ethEthanolsoline blends in a four-stroke SI engine. Advances in Mechanical Engineering, 15(3), 1–14. https://doi.org/10.1177/16878132231157178

Falano, T., Jeswani, H. K., &Azapagic, A. (2014). Assessing the environmental sustainability of ethEthanolom integrated biorefineries. Biotechnology journal, 9(6), 753–765. https://doi.org/10.1002/biot.201300246

Fan, Z., Wu, W., Hildebrand, A., Kasuga, T., Zhang, R., &Xiong, X. (2012). A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS ONE, 7(2), 1-8. https://doi.org/10.1371/journal.pone.0031139

Fathiah, M., Hartono, F., Astuti, R., Listiyowati, S., &Meryandini, A. (2023). Bioethanol Production from Non-Conventional Yeasts Wickerhamomycesanomalus (Pichia anomala) and Detection of ADH1 Gene. HAYATI Journal of Biosciences. https://doi.org/10.4308/hjb.31.2.221-228

Favaro, L., Viktor, M., Rose, S., Viljoen-Bloom, M., Van Zyl, W., Basaglia, M., Cagnin, L., & Casella, S. (2015). Consolidated bioprocessing of starchy substrates into ethEthanol industrial Saccharomyces cerevisiae strains secreting fungal amylases. Biotechnology and Bioengineering, 112. https://doi.org/10.1002/bit.25591

Fentahun, M., & Andualem, B. (2024). Optimization of bioethanol production using stress-tolerant yeast strains isolated from household alcoholic beverages (Tella, Tej, and Areke) and molasses (as substrate). F1000Research, 13, 286. https://doi.org/10.12688/f1000research.146910.2

Fentahun, M., &Andualem, B. (2024). Optimization of bioethanol production using stress-tolerant yeast strains isolated from household alcoholic beverages (Tella, Tej, and Areke) and molasses (as substrate). F1000Research, 13, 286. https://doi.org/10.12688/f1000research.146910.2

Fentahun, M., &Andualem, B. (2024). Optimization of bioethanol production using stress-tolerant yeast strains isolated from household alcoholic beverages (Tella, Tej, and Areke) and molasses (as substrate). F1000Research. https://doi.org/10.12688/f1000research.146910.1.

Flores, J. A., Gschaedler, A., Amaya-Delgado, L., (2013). Simultaneous saccharification and fermentation of Agave tequilanafructans by Kluyveromycesmarxianus yeasts for bioethanol and tequila production. Bioresource Technology, 146, 267–273. https://doi.org/10.1016/j.biortech.2013.07.078

Gabhane, J., William, S. P. M., Vaidya, A. N., Das, S., & Wate, S. R. (2015). Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Waste Management, 40, 92–99. https://doi.org/10.1016/j.wasman.2015.03.002

Garcia, A., Cara, C., Moya, M., Rapado, J., Puls, J., Castro, E., & Martin, C. (2014). Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit shells for ethanol production. Industrial Crops and Products, 53, 148-153. https://doi.org/10.1016/j.indcrop.2013.12.029

Gautam, P., Kumar, S., &Lokhandwala, S. (2019). Energy-aware intelligence in megacities. In Current Developments in Biotechnology and Bioengineering (pp. 211–238). Elsevier. https://doi.org/10.1016/B978-0-444-64083-3.00011-7

Ghazanfar, M., Irfan, M., Nadeem, M., Shakir, H., Khan, M., Ahmad, I., Saeed, S., Chen, Y., & Chen, L. (2022). Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation. https://doi.org/10.3390/fermentation8040148.

Goncalves, F.A., Ruiz, H.A., Santose, E.S., 2015. Bioethanol Production from Coconuts and Cactus Pretreated by Autohydrolysis. Industrial Crops and Products, Volume 77, pp. 1-12. https://doi.org/10.1016/j.indcrop.2015.06.041

Gonzalez, R., Smith, J., & Lee, M. (2024). Advances in fermentation of hydrolyzed biomass sugars for ethanol production. Journal of Renewable Energy Research, 12(3), 145–160. https://doi.org/10.1016/j.jrer.2024.03.005

González-Gloria, K. D., Tomás-Pejó, E., Amaya-Delgado, L., Rodríguez-Jasso, R. M., Loredo-Treviño, A., Singh, A., Hans, M., Martín, C., Kumar, S., & Ruiz, H. A. (2024). Biochemical and biorefinery platform for second-generation bioethanol: Fermentative strategies and microorganisms. Fermentation, 10(7), 361. https://doi.org/10.3390/fermentation10070361

Granjo, J. F. O., Nunes, D. S., Duarte, B. P. M., & Oliveira, N. M. C. (2020). A comparison of process alternatives for energy efficient bioethanol downstream processing. Separation and Purification Technology, 116, 116414. https://doi.org/10.1016/j.seppur.2019.116414

Gronchi, N., Favaro, L., Cagnin, L., Brojanigo, S., Pizzocchero, V., Basaglia, M., & Casella, S. (2019). Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol. Energies. https://doi.org/10.3390/EN12040714.

Habaki, H., Hu, H., &Egashira, R. (2016). Liquid–liquid equilibrium extraction of ethEthanolth mixed solvent for bioethanol concentration. Chinese Journal of Chemical Engineering, 24(2), 253–258. https://doi.org/10.1016/j.cjche.2015.07.022

Hafid, H. S., Abdul Rahman, M. N., Md Shah, U. K., Samsu Baharudin, B. F., & Zakaria, R. (2016). Bioethanol production from kitchen waste hydrolysate using separate hydrolysis and fermentation processes. Renewable and Sustainable Energy Reviews, 74, 671–681. https://doi.org/10.1016/j.rser.2017.02.071

Hashem, M., Alamri, S., Asseri, T., Mostafa, Y., Lyberatos, G., &Ntaikou, I. (2021). On the Optimization of Fermentation Conditions for Enhanced Bioethanol Yields from Starchy Biowaste via Yeast Co-Cultures. Sustainability. https://doi.org/10.3390/SU13041890.

Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource technology, 262, 310-318. https://doi.org/10.1016/j.biortech.2018.04.099

Hossain, N., Zaini, J. H., &Mahlia, T. M. I. (2017). A review of bioethanol production from plant-based waste biomass by yeast fermentation. International Journal of Technology, 1(1), 5-18. https://doi.org/10.14716/ijtech.v1i1.500

Ibrahim, H., Khedr, M., Salim, M., Badawy, M., Anwer, B., Elbehairi, S., Abd-Rabboh, H., Hamdy, M., Soliman, N., Awwad, N., & Hamed, A. (2024). Optimizing bioethanol production from Hassawi rice straw with Aspergillus sp. NAS51 cellulosic enzyme and in silico homology modeling. Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2024.103328

Ilves, R., Küüt, A., &Olt, J. (2019). Ethanol as internal combustion engine fuel. In A. Basile, A. Iulianelli, F. Dalena, & T. N. Veziroğlu (Eds.), Ethanol (pp. 215–229). Elsevier. https://doi.org/10.1016/B978-0-12-811458-2.00008-0

Iram, A., Cekmecelioglu, D., &Demirci, A. (2021). Screening of bacterial and fungal strains for cellulase and xylanase production using distillers’ dried grains with solubles (DDGS) as the main feedstock. Biomass Conversion and Biorefinery, 11(4), 1955–1964. https://doi.org/10.1007/s13399-019-00588-x

Izmirlioglu, G., &Demirci, A. (2017). Simultaneous saccharification and fermentation of ethEthanolom potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel, 202, 260-270. https://doi.org/10.1016/j.fuel.2017.04.047

Jambo, S.A., Abdulla, R., Marbawi, H., Gansau, J.A., 2019. Response surface optimization of bioethanol production from third generation feedstock-Eucheuma cottonii. Renew. Energy 132, 1e10. https://doi.org/10.1016/j.renene.2018.07.133

Kapilan, R. (2015). Solid state fermentation for microbial products: A review. Archives of Applied Science Research, 7(8), 21–25.

Khan, Z., Dwivedi, A.K., 2013. Fermentation of Biomass for Production of Ethanol: A Review Universal Journal of Environmental Research and Technology, Volume 3, pp. 113

Kida, Z. H., Dige, M. A., Muhammad, K. I., & Musa, A. R. (2023). Production, characterization and optimization of bioethanol from microalgae obtained from wastewater in Maiduguri Metropolitan Council, Borno State, Nigeria. Arid Zone Journal of Basic and Applied Research, 2(2), 10–22. https://www.azjournalbar.com

Kuene, J. G. (2019). Continuous cultures (chemostats). In T. M. Schmidt (Ed.), Encyclopedia of Microbiology (4th ed., pp. 743–761). Academic Press. https://doi.org/10.1016/B978-0-12-801238-3.02490-9

Kuenen, J. G. (2019). Continuous cultures (chemostats). In T. M. Schmidt (Ed.), Encyclopedia of Microbiology (4th ed., pp. 743–761). Academic Press. https://doi.org/10.1016/B978-0-12-801238-3.02490-9

Kumagai, A., Kawamura, S., Lee, S.-H., Endo, T., Rodriguez, M., &Mielenz, J. R. (2014). Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet disk milling. Bioresource Technology, 162, 89–95. https://doi.org/10.1016/j.biortech.2014.03.110

Kumar, K., Ghosh, S., Angelidaki, I., Holdt, S. L., Karakashev, D. B., Alvarado Morales, M., & Das, D. (2016). Recent developments on biofuels production from microalgae and macroalgae. Renewable and Sustainable Energy Reviews, 65, 235-249. https://doi.org/10.1016/j.rser.2016.06.055

Lai, C., Yang, Y., Zhao, Y., Jia, Y., Chen, L., Zhou, C., & Yong, Q. (2020). Promoting enzymatic saccharification of organosolv-pretreated poplar sawdust by saponin-rich tea seed waste. Bioprocess and Biosystems Engineering, 43(11), 1999–2007. https://doi.org/10.1007/s00449-020-02388-4

Lange L. (2017). Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiology spectrum, 5(1), 10.1128/microbiolspec.funk-0007-2016. https://doi.org/10.1128/microbiolspec.FUNK-0007-2016

Lassmann, T., Kravanja, P., &Friedl, A. (2014). Simulation of the downstream processing in the ethanol production from lignocellulosic biomass with ASPEN Plus® and IPSEpro. Energy, Sustainability and Society, 4(1), 27. https://doi.org/10.1186/s13705-014-0027-3

Liang, M., Damiani, A., He, Q. P., et al. (2013). Elucidating xylose metabolism of Scheffersomycesstipitis for lignocellulosic ethanol production. ACS Sustainable Chemistry & Engineering, 2, 38–48. https://doi.org/10.1021/sc400265g

Linde, M., Galbe, M., &Zacchi, G. (2008). Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Bioresource Technology, 99(14), 6505–6511. https://doi.org/10.1016/j.biortech.2007.11.032

Liu Z-H, Chen H-Z (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Biores Technol. 201:15–26. https://doi.org/10.1016/j.biortech.2015.11.023

Liu, S., Liu, H., Shen, C., Fang, W., Xiao, Y., & Fang, Z. (2021). Comparison of performances of different fungal laccases in delignification and detoxification of alkali-pretreated corncob for bioethanol production. Journal of industrial microbiology & biotechnology, 48(1-2), kuab013. https://doi.org/10.1093/jimb/kuab013

Liu, Y., Zhang, X., & Wang, Z. (2019). Advancements in continuous fermentation processes: A review. Biochemical Engineering Journal, 148, 1–12. https://doi.org/10.1016/j.bej.2019.01.004

López-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J. A., Prado-Barragán, L. A., Hernández-Herrera, J. A., & Aguilera-Carbó, A. F. (2023). Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation, 9(9), 819. https://doi.org/10.3390/fermentation9090819

M’Barek, H., Arif, S., Taidi, B., &Hajjaj, H. (2020). Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnology Reports, 28, e00541. https://doi.org/10.1016/j.btre.2020.e00541

Ma, J., Frear, C., Wang, Z., Yu, L., Zhao, Q., Li, X., & Chen, S. (2013). A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresource Technology, 134, 432–435. https://doi.org/10.1016/j.biortech.2013.01.142

MacLean, H.L., Lave, L.B., 2003. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 29, 1e69. https://doi.org/10.1016/S0360-1285(02)00032-1

Mahboubi, A., Järvinen, M., &Moazed, H. (2017). Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor. Bioresource Technology, 241, 296–308. https://doi.org/10.1016/j.biortech.2017.05.111

Maleki, F., Changizian, M., Zolfaghari, N., Rajaei, S., Noghabi, K., & Zahiri, H. (2021). Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains. Scientific Reports.https://doi.org/10.1038/s41598-021-92627-9.

Marin, B. (2019). Cultivation of medicinal mushroom biomass by solid state bioprocessing in bioreactors. In S. Steudler, A. Werner, & J. J. Cheng (Eds.), Solid state fermentation: Research and industrial applications (Advances in Biochemical Engineering/Biotechnology, Vol. 169, pp. 3–25). Springer. https://doi.org/10.1007/978-3-030-23675-5

Mattila, H., Kuuskeri, J., &Lundell, T. (2017). Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresource technology, 225, 254-261.https://doi.org/10.1016/j.biortech.2016.11.082

Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609. https://doi.org/10.1007/s13205-015-0279-4

Mazzeo, L., & Piemonte, V. (2020). Fermentation and biochemical engineering: Principles and applications (Chapter 15). In Catalysis, Green Chemistry and Sustainable Energy. Elsevier. https://doi.org/10.1016/B978-0-444-64337-7.00015-X

Meireles, I.T. & Brazinha, Carla & Coelhoso, Isabel & Crespo, Joao. (2016). Membranes for ethanol dehydration. https://doi.org/10.1016/B978-0-08-100451-7.00010-4

Meireles, I.T. &Brazinha, Carla &Coelhoso, Isabel & Crespo, Joao. (2016). Membranes for ethanol dehydration. https://doi.org/10.1016/B978-0-08-100451-7.00010-4

Mgeni, S. T., Mtashobya, L. A., &Kamuhabwa, J. K. E. (2025). Bioethanol production from fruit waste juice using millet and sorghum as additional fermentable sugar. Cleaner Energy Systems, 10, 100177. https://doi.org/10.1016/j.cles.2025.100177

Mishra, A., & Ghosh, S. (2019). Bioethanol production from various lignocellulosic feedstocks by a novel “fractional hydrolysis” technique with different inorganic acids and co-culture fermentation. Fuel, 236, 544-553. https://doi.org/10.1016/j.fuel.2018.09.024

Moshi, F. H., Akbar, S., & Rasul, M. G. (2014). Bioethanol production from cellulosic biomass: A review on fed-batch fermentation strategies. Renewable and Sustainable Energy Reviews, 39, 431–441. https://doi.org/10.1016/j.rser.2014.07.027

Mostafa, F. A., Abd, A. A., Aty, E., Hamed, E. R., Eid, B. M., & Ibrahim, N. A. (2016). Enzymatic, kinetic, and anti-microbial studies on Aspergillus terreus culture filtrate and Allium cepa seeds extract and their potent applications.Biocatalysis and Agricultural Biotechnology, 5, 116–122. https://doi.org/10.1016/j.bcab.2016.01.005

Mueansichaia, T., Rangseesuriyachaib, T., Thongchule, N., &Assabumrungrate, S. (2022). Lignocellulosic bioethanol production of Napier grass using Trichoderma reesei and Saccharomyces cerevisiae co-culture fermentation. International Journal of Renewable Energy Development, 11(2), 423–433. https://doi.org/10.14710/ijred.2022.43740

Mulyana, N., Larasati, T., Nurbayti, S., &A’yuni, Q. (2020). Improvement of bioethanol production in cornstalk fermentation through hydrolysis by fungi Trichoderma reesei exposed to gamma rays. Journal of Physics: Conference Series, 1436. https://doi.org/10.1088/1742-6596/1436/1/012040.

Mushlihah, S., Husain, D., Langford, A., &Tassakka, A. (2020). Fungal pretreatment as a sustainable and lowcost option for bioethanol production from marine algae. Journal of Cleaner Production, 265, 121763. https://doi.org/10.1016/j.jclepro.2020.121763

Nabipour, N., Mosavi, A., Hajnal, E., Nadai, L., Shamshirband, S., & Chau, K.-W. (2020). Modeling climate change impact on wind power resources using adaptive neuro-fuzzy inference system. Engineering Applications of Computational Fluid Mechanics, 14(1), 491–506. https://doi.org/10.1080/19942060.2020.1722241

Naqvi, S., Abbas, S., Naqvi, M., Batool, N., & Younas, T. (2021). Comparative Analysis of Mucor Indicus Against Aspergillus Niger and Aspergillus Fumigatus for Wheat Straw Fermentation to Produce Efficient, Inexpensive and Eco-Friendly Bioethanol. The International Journal of Plant, Animal and Environmental Sciences, 11, 221-232. https://doi.org/10.26502/IJPAES.202103.

Nasidi, M., Agu, R. C., Deeni, Y., & Walker, G. M. (2016). Utilization of whole sorghum crop residues for bioethanol production. Journal of the Institute of Brewing, 122(2), 268–277. https://doi.org/10.1002/jib.324

National Center for Biotechnology Information. (2025). PubChem Compound Summary for CID 702: Ethanol. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Ethanol

Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., &Lyberatos, G. (2018). Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 263, 75-83. https://doi.org/10.1016/j.biortech.2018.04.109

Obata, O., Akunna, J., Bockhorn, H., & Walker, G. (2016). Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol, 2(2), 134–145. https://doi.org/10.1515/bioeth-2016-0010

Oji, C. O., Okoro, I. A., & Nnaji, J. C. (2024). Optimization of bioethanol production from banana peels: An alternative energy source. Journal of Chemical Society of Nigeria, 49(3), 487–499 https://doi.org/10.46602/jcsn.v49i3.987

Ortiz, G. E., Noseda, D. G., Ponce Mora, M. C., Recupero, M. N., Blasco, M., & Albertó, E. (2016). A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation. Enzyme research, 2016, 3016149. https://doi.org/10.1155/2016/3016149

Osman, A. I., Fang, B., Zhang, Y., Liu, Y., Yu, J., Farghali, M., … Rooney, D. W. (2024). Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review. Environmental Chemistry Letters, 22, 1115–1154. https://doi.org/10.1007/s10311-023-01694

P.I. Hargreaves, C.A. Barcelos, A.C.A. da Costa, N. Pereira, Production of ethanol 3G from Kappaphycusalvarezii: evaluation of different process strategies, Bioresour. Technol. 134 (2013) 257–263. https://doi.org/10.1016/j.biortech.2013.02.002

Panda, S., &Maiti, S. (2024). Fungus-yeast tri-culture system for in situ cellulase production, biodetoxification, and bioethanol production using rice straw with cyclic shifting of temperature strategy. BioEnergy Research. https://doi.org/10.1007/s12155-024-10806-8

Parapouli, M., Vasileiadis, A., Afendra, A. S., &Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001

Park, I., Kim, I., Kang, K., Sohn, H., Rhee, I., Jin, I., & Jang, H. (2010). Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Process Biochemistry, 45(4), 487–492. https://doi.org/10.1016/j.procbio.2009.11.006

Paschos, T., Xiros, C., &Christakopoulos, P. (2015). Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products, 76, 793-802. https://doi.org/10.1016/j.indcrop.2015.07.061

Passoth, V., Blomqvist, J., &Schnurer, J. (2007). Dekkerabruxellensis and Lactobacillusvini form a stable ethanol-producing consortium in a commercial alcohol production process. Applied and Environmental Microbiology, 73, 4354–4356. https://doi.org/10.1128/AEM.00437-07

Pattanathu, R., & Rahman, P. K. S. M. (2017). Bioethanol production from renewable sources: Current perspectives and technological advancements. Biofuels, Bioproducts and Biorefining, 11(5), 897–909. https://doi.org/10.1002/bbb.1781

Phukoetphim, N., Wongsakul, P., &Sinsiri, T. (2018). A study on bioethanol production using fed-batch fermentation and yeast strains. Journal of Applied Biochemistry and Biotechnology, 185(2), 355–367. https://doi.org/10.1007/s12010-017-2569-2

Phwan, C. K., Phang, L. Y., Wasoh, H., & Abd-Aziz, S. (2018). Bioconversion of lignocellulosic biomass to bioethanol: A review on pretreatment, hydrolysis and fermentation. Bioresources and Bioprocessing, 5(1), 7. https://doi.org/10.1186/s40643-018-0197-8

Piarpuzan, D., Quintero, J. A., & Cardona, C. A. (2011). Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy, 35(3), 1130–1137. https://doi.org/10.1016/j.biombioe.2010.11.038

Plaza, P. E., Gallego-Morales, L. J., Peñuela-Vásquez, M., Lucas, S., García-Cubero, M. T., & Coca, M. (2017). Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii.Bioresource Technology, 244, 166–174. https://doi.org/10.1016/j.biortech.2017.07.139

Pooja NS, Sajeev MS, Jeeva ML, et al. Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech. 2018;8(1):69.https://doi.org /10.1007/s13205-018-1095-4

Prasad, S., Kumar, S., Yadav, K., Choudhry, J., Kamyab, H., Bach, Q., Sheetal, K., Kannojiya, S., & Gupta, N. (2020). Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy, 190, 116422. https://doi.org/10.1016/j.energy.2019.116422.

Puligundla, P., Ryu, H., & Lee, S. (2018). Recent advances in fermentation technology for bioethanol production. Journal of Industrial Microbiology & Biotechnology, 45(8), 711–723. https://doi.org/10.1007/s10295-018-2063-3

Rahamim, V., Nakonechny, F., Azagury, A., &Nisnevitch, M. (2022). Continuous Bioethanol Production by Fungi and Yeast Working in Tandem. Energies.https://doi.org/10.3390/en15124338.

Rastogi, M., Shrivastava, S., (2018). Current methodologies and advances in bioethanol production. J. Biotechnol. Biores. 1, 1e8.

Rocha-Meneses, L., Raud, M., Orup~ old, K., Kikas, T., (2019). Potential of bioethanol production waste for methane recovery. Energy 173, 133e139. https://doi.org/10.1016/j.energy.2019.02.073

Romaní, A., Garrote, G., Parajo, J.C., 2012. Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel 94, 305e312. https://doi.org/10.1016/j.fuel.2011.12.013

Romao, T. C., Menezes Filho, A. C. P. de, Tininis, A. G., Oliveira, M. S., Felippe, L. G., Castro, C. F. de S., & Morais, P. B. de. (2022)Fungal amylases applied to the sweet potato starch for bioethanol production. Research, Society and Development, 11(10), e136111032583. https://doi.org/10.33448/rsd-v11i10.32583

Romão, T., Filho, A., Tininis, A., Oliveira, M., Felippe, L., Castro, C., &Morais, P. (2022). Fungal amylases applied to the sweet potato starch for bioethanol production. Research, Society and Development. https://doi.org/10.33448/rsd-v11i10.32583.

Ruan, L., Wu, H., Wu, S., Zhou, L., Wu, S., & Shang, C. (2024). Optimizing the conditions of pretreatment and enzymatic hydrolysis of Sugarcane Bagasse for Bioethanol Production. ACS omega, 9(27), 29566-29575. https://doi.org/10.1021/acsomega.4c02485

Saeed, I., Latif, F., Maqbool, S., Saleem, M., Shaheen, N., & Subhan, M. (2025). Evaluation and Production of Cellulases from Aspergillus Niger Using Diverse Agro-Waste Substrates. (2025). Journal of Asian Development Studies, 14(1), 611-622. https://doi.org/10.62345/jads.2025.14.1.46

Sagar, I., Rajput, L. P. S., Singh, Y., Tantwai, K., &Nema, S. (2016). Studies on production of bioethanol from waste potatoes using co-culture of Saccharomyces cerevisiae and Aspergillus niger. Plant Archives, 16(1), 96–101.

Sahman Hi. Luth, M., Rusliana, E., Saleh, M., &Albaar, N. (2020). Potential of bioethanol production from local agricultural waste in North Maluku. Agrikan: JurnalAgribisnisPerikanan, 13(2), 454–463. https://doi.org/10.29239/j.agrikan.13.2.454-463

Saini, S., Chandel, A. K., & Sharma, K. K. (2020). Past practices and current trends in the recovery and purification of first-generation ethEthanol learning curve for lignocellulosic ethanol. Journal of Cleaner Production, 268, 122357. https://doi.org/10.1016/j.jclepro.2020.122357

Saldarriaga-Hernández, S., Velasco-Ayala, C., Leal-Isla Flores, P., de Jesús Rostro-Alanis, M., Parra-Saldivar, R., Iqbal, H. M. N., & Carrillo-Nieves, D. (2020). Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules, 161, 1099–1116. https://doi.org/10.1016/j.ijbiomac.2020.06.047

Salisu, B., & Umar, A. F. (2023). Microbial bioethanol production from locally sourced corncobs through saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. UMYU Scientifica, 2(3), 181-185. https://doi.org/10.56919/usci.2323.023

Salom~ao, F., Pereira, L., & Mendes, R. (2019). Advances in solid-state fermentation techniques for enhanced enzyme and metabolite production. Journal of Applied Bioprocess Engineering, 14(2), 105–119. https://doi.org/10.1000/jabe.v14i2.2019

Saroj, P., P., M., &Narasimhulu, K. (2020). Assessment and evaluation of cellulase production using ragi (Eleusinecoracana) husk as a substrate from thermo-acidophilic Aspergillus fumigatus JCM 10253. Bioprocess and Biosystems Engineering, 44, 113-126. https://doi.org/10.1007/s00449-020-02428-z.

Sattar, H., Bibi, Z., Kamran, A., Aman, A., &Qader, S. A. U. (2019). Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36.Biocatalysis and Agricultural Biotechnology, 21, 101256. https://doi.org/10.1016/j.bcab.2019.101256

Sebayang A, Masjuki H, Ong H, Dharma S, Silitonga A, Kusumo F, Milano J. (2017). Optimization of bioethanol production from sorghum grains using arti-ficial neural networks integrated with ant colony. Ind Crops Prod. https:// doi.org/10.1016/j.indcr op.2016.11.064.66

Sebayang, A. H., Masjuki, H. H., Ong, H. C., Dharma, S., Silitonga, A. S., Mahlia, T. M. I., & Aditiya, H. B. (2016). A perspective on bioethanol production from biomass as an alternative fuel for spark ignition engine. RSC Advances, 6(13), 14964–14992. https://doi.org/10.1039/C5RA24983J

ShakilaBegam, M., Boorani, E., Akilandeswari, P., & Pradeep, B. (2024). Bioethanol Production from Water Hyacinth (Eichhorniacrassipes) using Different Microbial Inoculants. Journal of Pure and Applied Microbiology. https://doi.org/10.22207/jpam.18.1.16.

Sharma, S., &Lorrache, H. (2020). Microbial bioethanol fermentation technologies—Recent trends and future prospects. In Bioethanol Production from Food Crops (pp. 1–25). Springer. https://doi.org/10.1007/978-3-030-12322-2_1

Shitophyta, L., Zhirmayanti, R., Khoirunnisa, H., Amelia, S., & Rauf, F. (2023). Production of Bioethanol from Kepok Banana Peels (Musa acuminata x Musa balbisiana) using Different Types of Yeast. G-Tech: JurnalTeknologiTerapan. https://doi.org/10.33379/gtech.v7i3.2621.

Singh, A., Bajar, S., & Bishnoi, N. R. (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomycesstipitis and their co-culture. Fuel, 116, 699-702. https://doi.org/10.1016/j.fuel.2013.08.072

Singh, S., Kaur, G., Singh, D. P., Arya, S. K., &Krishania, M. (2024). Exploring rice straw’s potential from a sustainable biorefinery standpoint: Towards valorization and diverse product production. Process Safety and Environmental Protection, 184, 314–331. https://doi.org/10.1016/j.psep.2024.01.105

Splitter, D., Pawlowski, A., Wagner, R., (2016). A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines. Front. Mech. Eng. 1, 16. https://doi.org/10.3389/fmech.2015.00016

Srivastava, A. K., Agrawal, P., &Rahiman, A. (2014). Delignification of rice husk and production of bioethanol. International Journal of Innovative Research in Science, Engineering and Technology, 3(3), 10187–10194.

Swain, M. R., Singh, A., Sharma, A. K., & Tuli, D. K. (2019). Bioethanol production from rice and wheat straw: An overview. In R. C. Ray & S. Ramachandran (Eds.), Bioethanol production from food crops (pp. 213–231). Academic Press. https://doi.org/10.1016/B978-0-12-813766-6.00011-4

Tekaligne, M., &Dinku, A. (2019). Bioethanol production from lignocellulosic biomass: A review on pretreatment methods. International Journal of Renewable Energy Research, 9(3), 1234–1245.

Tenkolu, G. A., Kuffi, K. D., &Gindaba, G. T. (2024). Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Conversion and Biorefinery, 14, 5205–5223. https://doi.org/10.1007/s13399-022-0297-4

Toor, M., Kumar, S. S., Malyan, S. K., Bishnoi, N. R., Mathimani, T., Rajendran, K., &Pugazhendhi, A. (2020). An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 242, 125080. https://doi.org/10.1016/j.chemosphere.2019.125080

United State Environmental Protection Agency. (2023). Biofuels and the environment: Third triennial report to Congress. EPA/600/R-25/XYZ. Washington, DC: U.S. EPA. https://www.epa.gov/risk/biofuels-and-environment

Vassilev, S. V., Vassileva, C. G., &Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330–350. https://doi.org /10.1016/j. fuel.2015.05.050

Vergara, P., Ladero, M., García-Ochoa, F., &Valiente-Blanco, J. (2018). PrePretreatment corn stover, Cynara cardunculus L. stems and wheat straw by ethanol–water and diluted sulfuric acid: Comparison under different energy. Bioresource Technology. https://www.sciencedirect.com/science/article/pii/S0960852418313117

Walker, G. M., & Walker, R. S. (2018). Enhancing yeast alcoholic fermentations. Advances in Applied Microbiology, 68, 87–129. https://doi.org/10.1016/bs.aambs.2018.05.003

Wang, L., York, S. W., Ingram, L. O., & Shanmugam, K. T. (2019). Simultaneous fermentation of biomass-derived sugars to ethanol by a coculture of an engineered Escherichia coli and Saccharomyces cerevisiae. Bioresource Technology, 273, 269-276. https://doi.org/10.1016/j.biortech.2018.11.016

Wang, X., Gou, C., Zheng, H., Guo, N., Li, Y., Liao, A., Liu, N., Tian, H., & Huang, J. (2024). Optimization of Consolidated Bioprocessing Fermentation of Uncooked Sweet Potato Residue for Bioethanol Production by Using a Recombinant Amylolytic Saccharomyces cerevisiae Strain via the Orthogonal Experimental Design Method. Fermentation. https://doi.org/10.3390/fermentation10090471.

Widyaningrum, T., Prastowo, I., Parahadi, M., &Prasetyo, A. D. (2016). Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally β-glucosidase producing yeast Saccharomyces cerevisiae JCM 3012. Biosciences Biotechnology Research Asia, 13(3), 1333–1340. https://doi.org/10.13005/bbra/2274

Wu, Y., Su, C., Zhang, G., Liao, Z., Wen, J., Wang, Y., Jiang, Y., Zhang, C., & Cai, D. (2023). High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance. Fermentation. https://doi.org/10.3390/fermentation9100906.

Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165. https://doi.org/10.1016/j.biortech.2010.07.017

Yücel, Y., &Göycıncık, S. (2015). Optimization of ethanol production from spent tea waste by Saccharomyces cerevisiae using statistical experimental designs. Biomass Conversion and Biorefinery, 5, 247–225. https://doi.org/10.1007/s13399-014-0138-2

Zabed, H., Faruq, G., &Sahu, J. N. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal 1–11. https://doi.org/10.1155/2014/957102

Zentou, H., Zainal Abidin, Z., Yunus, R., & Korelskiy, D. (2019). Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes, 7(7), Article 458. https://doi.org/10.3390/pr7070458

Published

30-06-2025

How to Cite

Munir, Y. A., Salisu, B. D., & Kabir, K. (2025). Review on Bioethanol Production using Diverse Substrates and Fungal Strains . UMYU Journal of Microbiology Research (UJMR), 10(3), 267–289. https://doi.org/10.47430/ujmr.25103.028